下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容(原文6991字)。
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)_在r语言的众多可视化中,哪个包提供了交互式图形的功能但并未专门用于静态图表绘制-CSDN博客
运用 Shiny 包打造基于鸢尾花数据集的交互式数据可视化应用
在数据科学中,数据的探索和可视化是分析的重要组成部分。R 语言提供了强大的工具来进行数据分析和可视化,其中 Shiny 包允许我们构建交互式的 Web 应用,使用户可以动态地探索数据。本文将详细介绍如何使用 Shiny 构建一个交互式的散点图应用,该应用允许用户选择鸢尾花数据集的不同变量进行可视化,并通过多种选项自定义图形。
1、准备工作
在开始之前,请确保你已经安装了以下 R 包:
shiny
: 用于构建交互式 Web 应用的核心包。bslib
: 提供主题支持,允许我们定制 Shiny 应用的外观。dplyr
: 一个用于数据操作的 R 包,使数据过滤和选择更加简洁和高效。ggplot2
: R 中最流行的数据可视化包,用于创建优美且灵活的图形。ggExtra
: 用于在ggplot2
图形上添加额外信息,如边际图。
可以通过运行以下命令来安装这些包:
install.packages(c("shiny", "bslib", "dplyr", "ggplot2", "ggExtra"))
2、鸢尾花数据集
鸢尾花数据集(iris
)是数据科学中常用的经典数据集之一。该数据集包含 150 条记录,每条记录代表一朵鸢尾花的测量数据。数据集包括四个数值变量(萼片长度、萼片宽度、花瓣长度和花瓣宽度)和一个分类变量(物种)。
3、构建 Shiny 应用
我们将分两个部分来构建这个应用:用户界面(UI)和服务器端逻辑(Server)。用户界面定义了应用的外观及交互元素,而服务器端逻辑则处理用户的输入并生成相应的输出。
加载展包和筛选数值型列
# 加载必要的R包
library(shiny) # 用于构建交互式Web应用
library(bslib) # 用于主题定制的包
library(dplyr) # 数据操作包
library(ggplot2) # 数据可视化包
library(ggExtra) # 用于在ggplot2图形中添加边际图的包
# 加载鸢尾花数据集
df <- iris
# 筛选出适合散点图的数值型列
df_num <- df |> select(where(is.numeric))
例如,如果鸢尾花数据集中包含列
Sepal.Length
、Sepal.Width
、Petal.Length
、Petal.Width
和Species
,其中前四列是数值型,那么df_num
将只包含前四列。
4、定义用户界面
在 Shiny 应用中,用户界面(UI)定义了应用的布局和用户交互组件。我们将使用 page_sidebar
函数来创建一个带有侧边栏的页面布局。
# 定义用户界面
ui <- page_sidebar(
sidebar = sidebar(
# 下拉菜单让用户选择X轴变量
varSelectInput("xvar", "X 变量", df_num, selected = "Sepal.Length"),
# 下拉菜单让用户选择Y轴变量
varSelectInput("yvar", "Y 变量", df_num, selected = "Sepal.Width"),
# 复选框组允许用户根据物种进行筛选
checkboxGroupInput(
"species", "按物种筛选",
choices = unique(df$Species),
selected = unique(df$Species)
),
hr(), # 添加水平分隔线
# 复选框允许用户选择是否按物种显示
checkboxInput("by_species", "显示物种", TRUE),
# 复选框允许用户选择是否显示边际图
checkboxInput("show_margins", "显示边际图", TRUE),
# 复选框允许用户选择是否添加平滑曲线
checkboxInput("smooth", "添加平滑曲线")
),
# 输出散点图
plotOutput("scatter")
)
varSelectInput
: 允许用户从鸢尾花数据集的数值变量中选择 X 轴和 Y 轴的变量。checkboxGroupInput
: 允许用户根据物种筛选数据。hr
: 插入一条水平分隔线,以分隔不同的输入控件。checkboxInput
: 复选框,用于控制是否显示物种、是否添加边际图,以及是否在散点图中添加平滑曲线。plotOutput
: 用于在页面上展示由ggplot2
生成的图形。
5、定义服务器端逻辑
定义服务器端逻辑指的是明确和编写在服务器端运行的一系列规则、流程和操作,以处理来自客户端(如网页浏览器或移动应用)的请求,并根据这些请求执行相应的任务。服务器端逻辑涵盖了广泛的功能,例如接收和解析客户端发送的数据,与数据库进行交互以读取或写入信息,执行复杂的计算和数据处理操作,根据特定条件做出决策,生成动态的内容并将其返回给客户端,以及处理用户认证、授权和安全性等方面的任务。
举个例子,当用户在购物网站上提交订单时,服务器端逻辑会验证订单信息的完整性和准确性,检查库存数量,计算总价,将订单数据保存到数据库中,并最终向用户返回确认消息。又比如,在社交媒体平台上,服务器端逻辑会决定哪些内容应该显示在用户的动态页面上,基于用户的关注列表、发布时间和内容相关性等因素进行筛选和排序。
# 定义服务器端逻辑
server <- function(input, output, session) {
# 根据用户选择的物种筛选数据
subsetted <- reactive({
req(input$species) # 确保选择了物种
df |> filter(Species %in% input$species) # 筛选数据
})
# 生成散点图
output$scatter <- renderPlot({
p <- ggplot(subsetted(), aes(!!input$xvar, !!input$yvar)) + list(
theme(legend.position = "bottom"), # 设置图例位置
if (input$by_species) aes(color = Species), # 如果选择按物种显示,按颜色区分物种
geom_point(), # 绘制散点
if (input$smooth) geom_smooth() # 如果选择平滑曲线,添加平滑线
)
# 如果选择显示边际图,添加边际图
if (input$show_margins) {
margin_type <- if (input$by_species) "density" else "histogram"
p <- ggExtra::ggMarginal(p, type = margin_type, margins = "both",
size = 8, groupColour = input$by_species, groupFill = input$by_species)
}
p # 返回生成的图形
}, res = 100) # 设置图形分辨率
}
subsetted
: 使用reactive
函数来创建一个反应式表达式,它根据用户选择的物种过滤数据集。req
函数确保在没有选择物种时应用不会出错。renderPlot
: 根据用户的输入动态生成图形。ggplot
函数用于创建基本的散点图,aes
函数定义了 X 轴和 Y 轴的变量。ggExtra::ggMarginal
: 如果用户选择了显示边际图,ggMarginal
函数会在散点图的边缘添加密度图或直方图。
6、 启动 Shiny 应用和效果展示
shinyApp(ui, server)
这段代码将 UI 和服务器逻辑组合在一起,并启动 Shiny 应用。运行此应用后,用户可以选择不同的 X 轴和 Y 轴变量,筛选特定物种,并通过复选框控制是否显示物种、添加边际图或平滑曲线。
在完成基础的 Shiny 应用之后,能够依据实际的需求来展开更进一步的拓展。比如说,您能够增添数据导入的功能,赋予用户上传自身数据集的权限,并对其展开可视化的分析;还能够丰富图表的类型,除了常见的散点图之外,添加诸如箱线图、柱状图等其他类型的图表;此外,借助 bslib 包,您能够为应用程序设定专属的自定义主题,从而使之与特定的品牌风格或者审美偏好相契合。
~~~~~~~~~~
《用 R 探索医药数据科学》专栏每周至少定期推出三篇文章,每篇文章篇幅长达 5000 字以上。目前,该专栏已更新超过 100 篇文章,并且我们会持续更新。其内容广泛,涵盖临床试验统计、临床预测模型、学术科研绘图、公共数据库挖掘、机器学习等热点领域。此外,对于已发表的知识点,我们会依据新的技术或理解及时进行更新,这是纸质版图书难以企及的优势。温馨提示各位,随着章节的逐步完成,折扣力度会逐渐降低。所以,当下正是订阅此专栏的最佳时机!
https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482
第一章:认识数据科学和R
1章1节:数据科学的发展历程,何 R 备受青睐及我们专栏的独特之处(更新20240822)-CSDN博客
1章2节:关于人工智能、机器学习、统计学连和机器学习、R 与 ChatGPT 的探究 (更新20240814)-CSDN博客
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客
第二章:R的安装和数据读取
2章1节:R和RStudio的下载和安装(Windows 和 Mac)_rst语言选择哪个镜像-CSDN博客
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20240823)_rstudio如何使用-CSDN博客
2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客
2章5节:认识和安装R的扩展包,什么是模糊搜索安装,工作目录和空间的区别与设置(更新20240807 )-CSDN博客
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(更新20240807 )_r语言 复制数据集-CSDN博客
2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客
2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客
2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客
2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客
第三章:认识数据
3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
第四章:数据的预处理
4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
第五章:定量数据的统计描述
5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
第六章:定性数据的统计描述
6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
第七章:R的传统绘图
7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客
7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
第八章:R的进阶绘图
8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客
8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客
8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客
8章8节:绘制自定义的高质量动态图和交互式动态图-CSDN博客
第九章:临床试验的统计
9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客
9章9节:试验的随机分组认识,用R做简单随机化-CSDN博客
9章11节:用R实现区组随机化和置换区组随机化-CSDN博客
9章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客
第十章:Meta分析攻略
10章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客
10章2节:Meta分析的7大步骤的扼要解读-CSDN博客
10章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客
10章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客
10章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客
10章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客
第十一章:主成分分析
11章2节:深度讲解用R进行主成分分析(中)-CSDN博客
11章3节:深度讲解用R进行主成分分析(下)-CSDN博客
第十二章:常见类型回归分析
12章4节:深度解读构建回归模型表达式的九个关键符号-CSDN博客
12章7节:构建因变量为分类变量的二分类Logistic回归模型-CSDN博客