企业级RAG系统建设路线图:万字报告解析RAG落地最佳实践

自2022年底OpenAI发布ChatGPT以来,大模型受到市场广泛关注,各行各业积极探索大模型的应用。但从企业实践来看,将大模型无缝集成到企业工作流中存在较多挑战,包括大模型的幻觉、开发和维护大模型的高成本以及由于大模型知识库的局限性而导致的准确率不满足业务需求。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

RAG(Retrieval-Augmented Generation,检索增强生成)是一种人工智能框架,旨在利用大语言模型(LLM)进行跨外部知识源的自然语言查询。RAG的核心思想是通过外挂知识库的方式给大模型提供更可靠的知识来抑制模型产生幻觉,通过定期迭代知识库的方式解决大模型知识更新慢和训练成本高的问题。

在实践RAG的过程中,企业会发现RAG走通很容易,但实际落地生产的难度非常大。基于对企业RAG落地实践的调研与研究,为企业提供一份全面的RAG应用指南,以及18个典型案例作为参考。

01

“大模型+RAG”应用指南

为了使RAG能够应用于更加复杂、更具价值的场景,企业需要创建一个完整的RAG系统链路,以便能够通过工程化的技术手段对链路上的不同部分进行实验和优化。RAG链路可分为三个部分:数据准备、知识检索和答案生成。

在数据准备环节,RAG的典型问题包括数据质量差、多模态信息、复杂的PDF提取等;在知识检索环节,RAG的典型问题包括内容缺失、错过排名靠前的文档、不在上下文中等;在答案生成阶段,RAG的典型问题包括未提取、不完整、格式错误、模型幻觉等。

基于对多家企业RAG落地实践的调研与研究,沙丘智库总结了如下六点RAG优化建议:

第一,构建完整的数据准备流程;

第二,采用多种分块方式;

第三,通过查询转换澄清用户意图;

第四,采用混合检索和重排策略;

第五,改进提示词模板;

第六,实施动态防护栏。

02

“大模型+RAG”典型案例

在《2024年“大模型+RAG”最佳实践报告》中,精选了18家企业的RAG技术实践,例如:

在数据准备环节,阿里云考虑到文档具有多层标题属性且不同标题之间存在关联性,提出多粒度知识提取方案,按照不同标题级别对文档进行拆分,然后基于Qwen14b模型和RefGPT训练了一个面向知识提取任务的专属模型,对各个粒度的chunk进行知识提取和组合,并通过去重和降噪的过程保证知识不丢失、不冗余。最终将文档知识提取成多个事实型对话,提升检索效果;

在知识检索环节,哈啰出行采用多路召回的方式,主要是向量召回和搜索召回。其中,向量召回使用了两类,一类是大模型的向量、另一类是传统深度模型向量;搜索召回也是多链路的,包括关键词、ngram等。通过多路召回的方式,可以达到较高的召回查全率。

在答案生成环节,中国移动为了解决事实性不足或逻辑缺失,采用FoRAG两阶段生成策略,首先生成大纲,然后基于大纲扩展生成最终答案。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 构建企业级 RAG 知识库的方法 构建企业级 RAG(检索增强生成)知识库涉及多个技术环节,包括数据预处理、向量存储、模型推理以及部署优化。以下是关于方法的具体描述: 企业可以根据其数据规模、安全需求和功能复杂度来选择适合的技术栈[^1]。对于希望快速验证概念的企业来说,可以采用 AnythingLLM 和 Ollama 的组合方案,这种配置简单易用且便于测试环境下的原型开发。而对于那些追求更高性能并愿意投入更多资源的企业,则建议使用 DeepSeek-V3 结合 LMDeploy 和 Milvus 的解决方案。 #### 数据准备与清洗 在实际操作过程中,高质量的数据源是成功的关键之一。因此,在实施之前应确保完成以下工作: - **数据收集**:从内部文档、FAQ 列表以及其他结构化/非结构化的业务资料中提取信息。 - **格式转换**:统一不同类型的文件至标准化形式以便后续处理。 - **噪声去除**:剔除无关紧要或者低质量的内容片段以提高最终效果。 #### 向量化表示 为了使自然语言能够被机器理解并用于相似性比较,通常会通过编码器将文本映射到高维空间中的稠密向量上。这一过程需要用到先进的预训练语言模型作为基础架构支持。 #### 存储管理 考虑到大规模查询场景下效率的重要性,选用高效的索引技术和数据库管理系统至关重要。Milvus 是一种专为矢量搜索设计的产品,它能够在保持良好召回率的同时提供极快的速度表现。 ### 推荐工具和技术框架 | 类别 | 描述 | |------------|--------------------------------------------------------------------------------------| | 预训练模型 | 使用像DeepSeek这样的大语言模型来进行初始的知识理解和生成能力赋予 | | API接口 | 借助LMDeploy简化大型模型服务端部属流程,从而实现更灵活可控的应用层调用 | | 数据库 | 运用Milvus高效地管理和加速近邻查找任务,尤其适用于海量维度特征匹配场合 | 以上提到的各种组件共同构成了完整的RAG流水线体系结构图如下所示: ```mermaid graph TD; A[原始语料] --> B{分词}; B --"Yes"--> C(嵌入); C --> D[Milvus]; E[用户提问] --> F(解码); F --> G{检索}; G --"TopK"--> H&Milvus; H --> I(重排序&融合); I --> J[返回答案]; ``` 此图表展示了如何利用上述提及的各项要素协同作业来达成理想的问答体验目标。 ### 最佳实践指南 当着手搭建自己的专属版本时,请牢记以下几个方面要点: - 明确项目范围界定清楚哪些领域内的专业知识最为重要; - 定期更新维护最新版内容防止过时信息干扰判断依据; - 测试评估阶段充分考虑多角度案例覆盖全面情况分析偏差原因及时调整参数设置直至达到满意标准为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT猫仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值