Llama 3.2系列深度评测:性能显著提升,是否真的值得选择?

令人兴奋的消息,Meta发布了Lllam3.2系列模型,当前的基准显示,Llama 3.2 在各种基准测试中表现优于 Claude3.5 Haiku 以及 GPT-4o-mini;加上前几天的Qwen2.5,现在开源的模型正在一步步缩小和闭源模型之间的差距,这很棒。

这是他们的第1次开源多模态大模型,总共有4个;其中两个是视觉模型(11B、90B)。90B可能是目前最大的视觉模型了,我记得前面一个比较大的是 Qwen2 VL 72B。

剩下的两个是1B和3B的,这些模型专为边缘计算和移动设备优化,支持 128k 令牌,擅长任务如摘要和遵循指令,针对各种处理器进行了优化。

Llama3.2作为Llama3.1的替代品,它是经过优化的,速度、准确性提高,特别擅长图像标题、视觉问答,甚至图像文本检索。

在这个演示视频中,你可以看到 Llama 3.2 模型能够准确分析和分类收据数据,随后以表格的形式展示结果,这正是 Llama 3.2 真正发光的地方。

轻量级模型(10 亿和 30 亿模型)是专为设备使用场景设计的,这些模型通过剪枝以及不同类型的蒸馏技术创建。剪枝是通过系统地移除网络的一部分来减少模型大小,同时保留性能,它应用于 Llama 3.1 的 180 亿参数模型。

另一种技术蒸馏则涉及从更大模型(如 80 亿和 700 亿参数的 Llama 3.1 系列)向较小模型转移知识,这通过在预训练过程中使用它们的输出作为目标来实现。这一过程将使新的 10 亿和 30 亿参数模型在保持强性能的同时变得更高效、更紧凑,这是 Meta 发布的一项非常酷的策略。

这些模型使开发者能够构建个性化的本地代理应用程序,确保数据始终留在设备上。我认为这是支持工具调用的最小SLLM,这真是很酷。

不同的模型适用于不同的场景,做端侧场景的人可能正在疯狂的搜索这样的小型SOTA模型。

如果我们看看视觉基准,可以看到 11B 模型的表现类似于 Haiku,而 90B 模型的表现则类似于 GPT-4o-mini;他们都支持图像推理用例,比如文档级理解,包括图表和图形、图像标注以及基于自然语言描述精准定位图像中的物体。

同时,小型模型的表现与 Gemma 2 和 Phi 3.5 相当,没有什么太大的突破。

在他们的一系列分享中,网友热议的亮点包括但不限于:

他们在 Hugging Face 上分享了模型权重,较小的模型也可以在 Ollama 上获得,但视觉模型却没有。不过,这些模型现在可以在 Together AI 上使用,所以我打算通过他们 测试一下,因为他们提供了一些免费积分。让我们开始测试吧。

5片这种产品有多少卡路里 ?(应该是100)

11B、 90B 都通过了,

把上面的第一个基准测试转成csv

两个模型都做到了,也没有什么数值上的错误

使用HTML,CSS,JS制作一个精确的副本,将所有代码放在一个文件中。

似乎完全不太相似哈,90B(上),11B(下)。

下面这个问题是我新找出来的,没想到 …

图片里有多少种水果?哪种水果最小,哪种水果最酸?它们具体放在哪里?

看90B

他说只有6种而实际上其实有7种,不过他说的大概位置是对的,只可惜最小的应该是葡萄,最酸的应该是柠檬。

看11B:

够敷衍的,我的天,他答案中是有正确答案的,可惜刚好说反了,而且令人可气的是他说位置都放在木栏里。这这这,你要说他不对吧他好像又对了,但是对又不怎么对,如果你要强行说他聪明:突然我都觉得他已经超越了一个维度,非常圆滑的跳出了这个判域,

诶,难道他不在木篮里吗,你能怎么反驳?hhh

不过我突然不死心了,我又连着测了两轮90B:

好吧,位置能找到(还能精确到行列数),数量摇摆不定,关于酸度,大小。。。尤其是大小,难道葡萄比较小这个认知都没有吗。

画面中有什么,最引人注目的是什么,它有多少,有什么东西隐藏的东西吗?

90B:

回答的还不错,水印说错了一些,应该是699pic.com,不过那水印人眼也挺难看的。

11B:

水印瞎编的,石头提醒了一次还是多数了一块。

下面:回答图片中的两个问题,

让他“戴”一下人类遇到这些验证码时候的痛苦面具

11B

怎么还加了紫茄子,这都分不清吗

90B

都说错了,但是看起来11b更会乱说一些。

OCR识别手稿

11B:

90B:

都识别都比较完美,堪比我本地的白描了,哈哈哈。

总的来说,虽然这几款模型都还不错,回答一些问题中也表现了一些较理想的效果,但我在测试的过程中,遇到Llama 3.2对于问题的审查很严格,好几次让他创建其他网页截图代码都不通过,或者其他有关的图片问题直接不回答。

Qwen 2 VL 72B 与 Llama 3.2 90B 模型相当,意味着一个更小的模型可以做到 90B 所做的事情,而且它的审查更少。11B 模型相对而言幻觉更多,Pixol 在这个领域要好得多,甚至 Qwen 2 VL 7B 也更好。

总之,Quen 2 VL 72B 可能仍然是视觉任务的最佳模型,Llama3.2 这些模型还不够好,而且它们比竞争对手大,却提供较低的结果,当然你可以去做更多的测试。


AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

<think>嗯,用户之前问过关于EntropyYue/chatglm3:latest的信息,现在又询问llama3.2-vision:latest。我需要先确认这个模型是否存在,因为目前Meta发布的Llama系列Llama 3,但并没有官方版本叫Llama3.2-vision。可能用户提到的名称有误,或者是一个社区或第三方修改的版本。 首先,我应该检查用户提供的模型名称是否正确。Llama 3是Meta在2024年发布的,支持多模态的版本可能称为Llama-3-Vision,但不确定是否3.2的版本。可能用户混淆了版本号,或者是指某个特定的分支。 接下来,我需要考虑用户的需求。他们可能对多模态模型感兴趣,尤其是结合视觉和语言处理的模型。用户可能希望了解这个模型的功能、用途、部署方法等,类似于之前介绍的ChatGLM3。 需要指出模型名称可能不准确,避免误导用户。同时,如果存在类似的官方或知名第三方模型,可以推荐,比如Llama-3-Vision或Meta的Llama 3多模态版本。另外,用户可能需要技术细节,如架构、训练数据、硬件要求等,但如果没有官方信息,应该谨慎说明。 还要注意用户可能想部署这个模型,所以需要提供一般性的多模态模型部署建议,比如使用Transformers库,结合Hugging Face的资源,或者依赖如PyTorch和相关的视觉库。 最后,提醒用户注意验证第三方模型的可靠性,检查来源、社区评价和文档,确保安全性和合规性。毕竟第三方修改可能存在风险,特别是涉及商业使用时需要授权。</think>关于您提到的 **llama3.2-vision:latest**,目前(截至2024年7月)存在以下关键信息需要澄清和说明: --- ### 关键事实核查 1. **名称真实性** - Meta官方未发布过名为 `llama3.2-vision` 的模型,当前最新公开版本为 **Llama 3**(支持文本交互) - 推测可能是社区开发者基于 Llama 3 架构添加视觉模块的改编版本 2. **技术推测**(假设存在该模型) - **架构特性**: - 可能采用双模态编码器结构:$$ \text{Input} \rightarrow \left[ \begin{array}{l} \text{Text Encoder} \\ \text{Vision Encoder} \end{array} \right] \rightarrow \text{Cross-Modal Fusion} $$ - 支持图像描述、视觉问答(VQA)等任务 - **训练数据**: - 可能融合了文本语料(如RedPajama)与图像数据集(如LAION-5B) --- ### 典型功能假设 | 功能类型 | 示例应用场景 | |----------------|-----------------------------| | **图像理解** | 解析医学影像并生成诊断建议 | | **跨模态生成** | 根据用户草图生成网页前端代码 | | **文档解析** | 从扫描版PDF提取结构化数据 | --- ### 部署注意事项 ```text 硬件需求(预估): - GPU显存 ≥ 16GB(处理512x512分辨率图像) - 推荐使用带NVLink的多卡配置(如A100x2) 软件依赖: - PyTorch 2.0+ 与 CUDA 12.1 - 视觉库:OpenCV, PIL - 多模态框架:HuggingFace Transformers 4.35+ ``` --- ### 建议验证步骤 1. **来源确认** - 通过 `huggingface.co` 或官方GitHub仓库验证模型真实性 - 检查模型哈希值是否与社区公示一致 2. **安全测试** ```python # 示例安全检测代码(需调整具体路径) from transformers import pipeline vision_pipe = pipeline("image-to-text", model="llama3.2-vision") output = vision_pipe("suspicious_image.jpg", max_new_tokens=50) print("潜在风险内容过滤:", output.safety_score) ``` --- ### 替代方案推荐 若需可靠的**多模态大模型**,建议考虑: 1. Meta官方 **Llama-3-Vision**(若未来发布) 2. OpenAI **GPT-4o**(商用API) 3. 开源方案 **Fuyu-8B**(已通过HuggingFace验证) 注:使用非官方模型时,请务必遵守《生成式人工智能服务管理暂行办法》及数据隐私相关法规。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值