前言
今天想和大家深入聊聊 RAG(Retrieval-Augmented Generation,检索增强生成)的 5 种切分策略,相信这些内容会对从事相关领域工作或者对 AI 技术感兴趣的朋友们有所帮助。
在当今的 AI 技术浪潮中,RAG 作为一种强大的技术手段,正逐渐在众多应用场景中崭露头角。
它巧妙地结合了信息检索与文本生成,能够为用户提供更加精准、丰富的回答。然而,要想充分发挥 RAG 的优势,合理的切分策略至关重要。
一、基于字符长度的切分
这是一种较为基础但十分有效的切分策略。我们可以设定一个固定的字符长度阈值,比如每 500 个字符为一段进行切分。这种方法的好处在于简单直接,易于实现。
例如在处理一篇较长的文档时,按照固定长度切分后,能够将大段文本转化为较小的、可管理的单元。
在进行检索和生成时,模型可以更高效地处理这些片段,减少计算资源的消耗。
但它也存在一定的局限性,可能会在字符边界处截断有意义的语义单元,导致信息的完整性受到一定影响。
比如在切分一篇科技论文时,可能会把一个完整的术语或者概念切成两半,这就需要在后续的处理中进行额外的拼接或修正操作。
二、基于语义单元的切分
与基于字符长度的切分不同,基于语义单元的切分更加注重文本的内在含义。
我们可以借助自然语言处理技术中的语义分析工具,识别出句子、段落甚至篇章的语义边界。
例如,以完整的句子为最小切分单元,或者以一个完整的段落主题为一个切分块。这样做的优势在于能够更好地保留文本的语义完整性,使得检索到的信息更加连贯、有逻辑性。
在回答用户问题时,生成的文本也会更加自然流畅。
然而,这种策略的实现难度相对较高,需要依赖较为复杂的语义分析算法和模型,并且在处理一些语义模糊或者结构复杂的文本时,可能会出现切分不准确的情况。
比如一些文学作品中存在大量的隐喻、象征等修辞手法,可能会干扰语义边界的准确识别。
三、基于用户需求的切分
RAG 的最终目的是服务于用户,所以基于用户需求的切分策略具有很强的实用性。
在接收到用户的问题后,我们可以对问题进行分析,确定用户的核心需求和关注点,然后根据这些信息对文本进行切分。
例如,如果用户询问关于某个产品的功能特点,我们就可以在相关的产品文档或资料中,以功能模块为单位进行切分。
这样一来,检索到的信息能够最大程度地满足用户的具体需求,提供更加个性化的回答。
但是,这种策略对用户问题的理解和分析能力要求较高,需要建立精准的用户需求模型,并且在处理一些复杂、模糊的用户问题时可能会出现偏差。
四、基于领域知识的切分
对于特定领域的文本,基于领域知识的切分策略能够发挥独特的作用。我们可以根据领域内的专业术语、概念体系以及常见的文档结构来进行切分。
比如在医学领域,以疾病名称、治疗方法、药物名称等作为切分的关键节点;在法律领域,以法律条款、案例类型等为依据进行切分。
这种切分方式能够使得检索结果更加聚焦于特定领域的核心知识,提高回答的专业性和准确性。
例如,当用户咨询关于某种疾病的治疗方案时,基于医学领域知识切分后的文本能够快速定位到相关的治疗方法和案例信息,为用户提供更有针对性的解答。
不过,该策略的应用范围相对较窄,需要对特定领域有深入的了解和专业知识储备,并且在跨领域文本处理时可能不太适用。
五、混合切分策略
考虑到每种切分策略都有其优缺点,在实际应用中,往往采用混合切分策略能够取得更好的效果。
我们可以综合运用上述几种切分方法,根据文本的类型、应用场景以及用户需求等因素,灵活地选择不同的切分方式并进行组合。
比如,对于一般的新闻资讯类文本,可以先采用基于字符长度的初步切分,然后再根据语义单元进行微调;对于专业领域的文本,则在基于领域知识切分的基础上,结合用户需求进一步优化切分结果。
通过这种混合切分策略,能够在保证切分效率的同时,提高切分的准确性和适应性,从而更好地发挥 RAG 的优势。
六、总结
总之,RAG 的这 5 种切分策略各有千秋,在不同的场景下都有着重要的应用价值。
我们需要深入理解这些策略的特点和适用范围,根据实际项目需求合理选择和运用,以打造更加智能、高效的 AI 应用产品。
最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
