国内大模型正处于什么阶段,有关键的技术壁垒吗?

好消息:我国大模型水平世界第二。

坏消息:我国大模型水平稳居世界第二。

没错,稳居世界第二,很长时间都只能屈居第二,短时间内看不到超过美帝的可能性。

因为AI大模型这个行业发展很快,罗列现在的大模型来对比意义不是很大,更强的大模型永远会在几个月之后发布,更先进的理论和架构永远在路上,与其对比现有模型,不如对比决定大模型实力的背后主要元素。

我们来盘一下决定大模型水平的几个要素:

  • 人才
  • 数据
  • 算力
  • 营销

大模型,就是人才构建一个系统,塞进去大量数据,运用超大算力,训练出一个压缩了大量知识和推理能力的东西,最后把这个东西营销出去。

大模型做到什么水平,就看这几个关键元素就好。

先说人才

美国当然有人才优势,但是我国的人才储备也不差,或者说后劲很强。

一些彪炳史册的AI论文比如Transformer的Attention is All Your Need的8个作者中没有中国人,但是这几年你arvix去看AI论文,甚至很难找到一篇作者栏里没有中文拼音名,注意,是中文拼音名,还不是英文名中文姓,也就是说,这些作者都是来自于中国大陆。

中国国内自不用说,即便在美国,中国人在AI方面的影响力也越来越强,还是那句老话,就算这些人里一百个只有一个愿意回国做贡献,那我国也赚了。

即便这些人不回国,国内原生的AI人才也有很多,也搞得风生水起,只是目前还没有能像Ilya Sutskever和 Noam Shazeer这样的超级大牛领军人物。

人才这部分,中国的AI人才较美国稍逊一丢丢。

再说数据

数据部分不光看数据的数量,也要看数据管理能力。

这一点上,靠着搜索时代和大数据时代的积累,中国和美国的能力不分上下,两国都有成熟的大数据管理能力。

从最近几个发布的国内大模型能力看,一如既往,国产的中文能力要比美国的强一些,这只能解释为国产大模型能够获得更全的训练语料。

数据这部分,双方打成平手。

再看算力

说道算力,当然主要看GPU芯片了,这一点上我国的劣势很明显。

硅谷曾经认为3.2万张GPU卡是一个门槛,过了这么门槛属于大模型第一梯队,但是几个头部AI大厂在进一步扩充军备,xAI拥有GPU卡数量已经是十万级了,所以这个门槛还会继续提高。

反关国内,因为老美的制裁,高端GPU卡无法正常进口,国产GPU卡还没有取得事实意义上的突破,所以GPU十分吃紧,国内就没有一个厂拥有超过一万张卡。

算力这部分,我国就落后很多。

最后看营销

可能你觉得营销不是技术范畴的事情,不应该作为主要因素,实际上营销非常重要,你做的东西再牛,不去吹牛,别人也不知道啊。

普遍认为,美国科技公司,尤其是初创公司,营销水平不如我国,其实美国科技公司的顶级营销手法也不差,光是OpenAI在o1发布之前神秘兮兮发一些草莓图片这一手,就吊足了市场胃口。

国内的营销手法当然不差,某国产大模型猛打『长文本』的概念,大模型这个东西的衡量指标还是很复杂,一般用户也很难理解,但是,好比你说自己做的电视就是『大』,这个感受太直观了,消费者感觉『大』就是好,你说的自己的大模型就是能够『长文本』,这个感受也非常直观,让人一下子就就记住。

同时,我们也看见很多国产AI营销的败笔,光是众多大模型起名达到四个拗口的汉字,就让人怀疑是不是产品策划过程中是不是根本没有营销专业人士参与。

总结起来,两国的差距是:

  • 人才,中国稍逊
  • 数据,旗鼓相当,中文部分我国占优
  • 算力,中国落后明显
  • 营销,旗鼓相当

我国在中文数据上有一些先天优势,在算力上则被美国设立了壁垒,没办法,棋盘上局势如此,我国目前也真的自能稳居第二。

如果说过国家真的有一个统一的战略的话,那我斗胆猜测一下在AI方面我国的战略:

  1. 抓紧时间解决算力问题,无论是开发GPU还是算力网络,要把算力差距在未来几年内弥补过来。
  2. 国产大模型努力跟上,在算力问题解决之前,大模型整体水平超过美帝是不大可能,但只要不被美国甩下断代的差距就行,跟紧第一,等待弯道超车的机会,严格说来,现在国内的大模型对这个任务完成得挺好。
  3. 扩大AI应用,即使国产大模型不能世界领先,但够用就行,只要AI应用普及开来,巨大的需求就能反哺大模型和芯片产业,用不着反超美帝成为第一,AI应用都可以有巨大市场,还是那句话,市场有了,资金和技术自然来

对于大部分人来说,也没机会参与到GPU芯片研发,也不会亲自去训练大模型,更多的AI机会在第3点AI应用上,这是一片蓝海。

最后我想把AI大模型上中美的差距类比一下中西方(是的,不是中美)之间芯片的差距。

以美国为首的西方在芯片方面卡我国脖子,但我国现在能够不也能够制造成熟的7纳米芯片生产设备了嘛,所以只要努力,肯定是会有成果的。

同时,我们在3纳米制程上还未产生突破,这是因为到3纳米制造理论和工艺都完全不一样,这个质变需要很长时间积累,急不得,但是在攻克更高阶芯片的这几年里,其他行业的人也别干等着啊,该干嘛干嘛,活人不能被尿憋死,没有3纳米芯片,那就用7纳米芯片做应用呗,重要的是不要停下来,做好应用积累,到了3纳米芯片有了的时候应用领域也ready了。

芯片和AI一样,不要想象成某一个大牛搞了个技术突破就搞定,这两个领域都不是做一两件大的事搞定的,而是做很多小的事情才成功的。

咱们每个人就做好自己能做的小事,就是做贡献了。

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值