正如文章标题所言,你是否也曾好奇过:加载使用一个 70B 大小的 LLM,究竟需要多大的 GPU 显存呢?读完这篇文章应该会有答案。
为什么是GPU,而不是CPU
AI 本质上是大量的 矩阵 与
向量
运算 ,属于计算密集型运算,需要大量的内存空间来保存模型的训练参数。一般通用 CPU 运算单元都是标量
,而 GPU 是一个把SIMD(单指令多数据)和SIMT(单指令多线程)运用到极致的协处理器,在体系结构上实现了运算单元的高度并行。
简单讲,就是 GPU 比 CPU 更适合用来做计算密集型任务。而 LLM 的推理、部署过程恰巧就是计算型任务。所以 GPU 比 CPU 更加适合用来运行 LLM 运算。
有一个有趣的事实,GPU的全称是Graphic Processing Unit,从名字中就能看出它最初被设计用来处理图像渲染相关的。但是命运似乎开了一个玩笑,没想到后来ML/AI也长成了矩阵的模样。GPU 就顺其自然的接管 AI/ML 甚至 LLM 运算了。
如何计算 GPU Memory
在大模型的使用过程中,有几个因素会影响 GPU Memory 的占用大小,主要包含以下几个因素:
模型自身大小
Key-Value Cache
Memory Overhead
模型大小
模型本身的大小在很大程度上,决定了需要使用 GPU Memory 的大小。模型越大,需使用的 GPU 内存越大。
模型的大小由 2 部分决定:模型参数量
和 数据精度类型
模型参数量
也就是进行模型训练的参数个数,单位是B(Billion缩写)。比如 GPT-3 的参数量是 175 Billion,LLaMa-2 13B
的参数量就是13 BIllion。
参数数据类型
也就是模型的输入参数数据类型,有float32或float16或者float8等。例如,在 PyTorch 中,你可以通过以下方式指定数据类型:
import torch`` ``# 设置数据类型为 float16``torch.set_default_dtype(torch.float16)`` ``# 创建一个 Transformer 模型实例``model = TransformerModel()
不同的数据类型,每个参数占用的大小也不一样:
float32 : 1 个参数占用 4 个 byte
float16 :1 个参数占用 2 个 byte
8 bit :1 个参数只占用 1 个 byte
假设我们使用 float16 加载 LLaMa-2 13B 的模型,那最终加载模型的内存大小为 : 13 Billion * 2 byte = 26 GB。
Key-Value Cache
KV缓存(Key-Value Cache)是 Transformer 模型在自回归解码过程中使用的一种优化技术,主要是用来提升大模型的推理速度。它通过缓存之前计算得到的 键Key
和 值Value
向量来减少重复计算,从而提高推理效率。大体思想其实跟动态规划DP中的以空间换时间差不多。
计算公式如下:
2 \* n\_dtype \* n\_layers \* n\_hidden\_size
参数解释:
2 代表每个 KV-Cache 都需要保存 2 个byte 来分别缓存 Key 和 Value。
n_dtype 就是上文中提到的参数数据类型。这个参数确保了模型在处理数据时使用正确的数据类型,从而避免潜在的精度问题。
n_layers 表示Transformer中编码器和解码器的层数总和。每个编码器层和解码器层都包含自注意力机制和前馈神经网络,通过堆叠多个这样的层,可以增加模型的深度和表达能力。
n_hidden_size 指隐藏层的维度大小。神经网络通常包括输入层、隐藏层和输出层,而n_hidden_size就是用来定义隐藏层的维度大小。
同样还是以 LLaMa-2 13B 模型举例,数据类型为 float16,1 个 token 的 KV Cache 大小为:
2 \* 2 \* 40 \* 5120 = 820 KB/token
LLaMa-2 13B 的 n_layers是 40,n_hidden_size是 5120,所以最终结果是 820 KB。
800 KB 看起来并不是很多,但这只是仅仅一个 Token 的使用。在实际的大模型应用中里,用户的输入Input和大模型的输出Output,往往是需要使用成千上万个 Token 来推理得出的。
比如使用 “Token 计算网站” 来计算 “上海今天天气怎么样?” 这句话会使用多少 Token。结果如下:
可以看出总共占用了 5 个 Token。然后输出结果如下:
可以看出大模型输出上海天气结果使用了 54 个 Token。
因此 “上海今天天气怎么样?” 这句 Query,大模型LLM总共使用了 5 + 54 个 Token。每个 Token 需使用 800KB,因此这次 Query 总共需要使用 59 * 800 KB = 46MB。
注意:实际场景中,LLM有可能接收到更多 Token 的输入Input,比如处理长文本等需求。 LLaMa-2 13B 单个请求可设置的最大 Token 数是 4096 个。因此 LLaMa-2 13B 单次能处理的最大 KV-Cache 就是 4096 * 820 KB = 3.2 GB。另外随着并发请求次数的增多,这个数字还会成倍的增长!
Memory Overhead
在 LLM 的推理过程中,还有一些碎片化的临时变量。这些临时变量也需要占用 GPU Memory。所以除了模型大小、KV-Cache 之外,还需要有一定的额外内存开销。一般可以使用模型大小 + KV-Cache最大值的 10% 来当做额外内存开销的大小。
GPU Memory 总计算公式
要计算所有大模型在使用过程中需要的 GPU Memory,需要将所有上述提到的因素都考虑到。下面公式是一个完整的计算公式:
Total GPU Memory = 模型大小 + KV Cache + Memory Overhead
最后还是以 LLaMa-2 13B 来举例。假设有 10 个并发请求,同时请求 LLaMa-2 13B 以最大 Token数(4096) 进行模型推理。 那最终需要的 GPU Memory 计算过程如下:
-
模型大小= 13 Billion * 2 Bytes = 26 GB
-
Total KV cache= 800 KB * 4096 Tokens * 10 并发请求 = 32 GB
-
Memory Overhead= 0.1 * (26 GB + 32 GB) = 5.8 GB
所以最终需要总 GPU memory为: 26 GB + 32 GB + 5.8 GB = 63.8 GB。需要 2 块英伟达的 A100 芯片才可以。
常见大模型的 GPU Memory
下面 2 张表格分别描述了不同大小的模型,根据不同Token数以及不同并发请求数的情况下,所需要的 GPU Memory 大小。
单次并发请求:
10 次 并发请求:
可以看出随着并发请求数、Token数,以及大模型大小的增长,GPU Memory的增长是很恐怖的,这样硬件算力的成本太高。其实是有一些技术手段是能够优化内存占用的,后续可以另起文章单独介绍。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
