在探索人工智能的无限可能中,文本和图像生成技术正逐渐成为创意表达的新领域。无论是通过文字激发想象的文生文技术,还是将静态图像转化为动态故事的文生图和图生视频技术,它们都为我们打开了一扇扇通往创意世界的大门。在这些技术的帮助下,我们可以将抽象的概念转化为具体的叙述,将平面的图像赋予生命力。以下是一些编写提示词的指导原则,它们将帮助你更好地掌握这些技术,创造出令人印象深刻的作品。
第一类:文生文(文本生成文本)类大模型
一、文生文的提示词主要依赖于文本内容的语义理解和生成能力。在编写提示词时,应注意以下几点:
1.明确主题:确保提示词能够清晰表达想要生成文本的主题或核心思想。
2.语言简洁:使用简洁明了的语言,避免冗长和复杂的句子结构。
3.逻辑连贯:保持文本的逻辑性和连贯性,使得生成的文本读起来自然流畅。
4.细节描述:适当添加细节,以丰富文本内容,但要避免过度复杂化
二、具体操作方法:
步骤1:确定生成文本的目的和主题
首先,你需要确定你想要生成文本的目的和主题。比如,你想要生成一篇关于“环境保护”的文章。
步骤2:编写提示词
1. 明确主题:
核心思想: 提高公众对环境保护的意识和参与度。
文本目的: 鼓励人们采取实际行动,减少环境污染,保护自然资源。
2. 语言简洁:
开头: “在这个快速发展的时代,环境保护已成为全球性的紧迫议题。”
中间: “我们每个人都有责任采取行动,从减少塑料使用到支持可持续产品。”
结尾: “让我们携手共建一个绿色、清洁的地球。”
3. 逻辑连贯:
引言: 介绍当前环境问题的严峻性。
主体: 阐述个人和社区如何通过简单日常行为减少环境影响。
结论: 强调集体行动的重要性,并呼吁读者加入环保行动。
4. 细节描述:
具体行动: “例如,我们可以通过骑自行车代替开车,减少碳排放;或者参与社区植树活动,增加绿色空间。”
实际影响: “这些小行动累积起来,可以显著减少空气污染,保护生物多样性。”
情感连接: “想象一下,当我们的孩子们能在一个更健康、更绿色的世界中成长,这是多么美好的愿景。”
步骤3:生成文本
使用这些提示词,文本生成模型将尝试创建一篇符合这些要求的文章。结果展示如下:
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
第二类:文生图(文本生成图像)类大模型
一、文生图的提示词需要包含以下特点:
1.主体描述:描述图像中的主要对象或人物。
2.主体细节:描述主体的外观、动作、表情等细节。
3.环境描述:描述图像中的背景、场景和氛围。
4.艺术风格:描述图像的风格,如写实、卡通、油画等。
5.画质和视角:描述图像的清晰度、色彩饱和度和视角。
6.避免负向提示词:如不想要的元素或风格,应明确指出以避免生成不希望的内容。
二、具体操作方法:
步骤1:确定生成图像的主题
首先,你需要确定你想要生成图像的主题。比如,你想要生成一张“宁静的乡村早晨”的
步骤2:编写提示词
1. 主体描述:
- 主要对象: 一位穿着传统服饰的年轻女子。
- 人物角色: 她是一位乡村教师,正准备去学校。
2. 主体细节:
- 外观: 女子长发披肩,穿着色彩柔和的长裙,手持一本打开的书。
- 动作: 她正沿着乡间小路缓缓行走,目光专注地阅读。
- 表情: 面带微笑,显得平和而满足。
3. 环境描述:
- 背景: 背景是一片金黄色的麦田,麦穗随风轻轻摇曳。
- 场景: 远处可见几间乡村小屋,炊烟袅袅,天空中飘着几朵白云。
- 氛围: 整体氛围宁静而温馨,阳光透过云层洒在大地上。
4. 艺术风格:
- 风格: 采用油画风格,色彩丰富而细腻。
5. 画质和视角:
- 清晰度: 图像清晰,细节丰富。
- 色彩饱和度: 色彩饱满,给人以温暖的感觉。
- 视角: 采用稍微低角度的视角,以突出主体和广阔的天空。
6. 避免负向提示词:
- 不想要的元素: 避免现代城市元素,如高楼大厦、汽车等。
- 不想要的风格: 不要过于抽象或极简的风格,保持画面的温馨和真实感。
步骤3:生成图像
使用这些提示词,文本生成图像模型将尝试创建符合这些要求的图像。结果展示如下:
第三类:文生视频(文本生成视频)类大模型
一、文生视频的提示词应包含以下元素:
1.镜头语言:通过镜头的应用和镜头之间的衔接来传达故事或信息。
2.主体描述:画面中的人物、动物、物体等主体。
3.主体运动:描述主体希望实现的运动轨迹。
4.场景描述:描述视频的背景和环境。
5.氛围营造:通过光影、色彩等元素营造特定的氛围。
6.时间流逝:通过细节展现时间的流逝和故事的发展。
7.情感对比:通过对比不同情感状态来强化情感表达的差异和冲突。
8.文化元素融入:在视频中加入与主题相关的文化符号、传统习俗等细节。
二、具体操作方法:
步骤1:确定生成视频的目的和主题
首先,你需要确定你想要生成视频的目的和主题。比如,你想要生成一篇关于“舞蹈”的视频
步骤2:编写提示词
1.镜头语言:视频以一个长镜头开始,展示舞者在充满中国风的庭院中缓缓起舞。随后,通过短镜头的快速切换,捕捉舞者每一个精确而有力的舞步,增强视觉节奏感和故事的紧张气氛。
2.主体描述:画面中,一位身着华丽汉服的舞者成为焦点,她的每一个动作都充满了故事。背景中,一只鸟在天空中自由飞翔,与舞者的地面动作形成对比。
3.主体运动:舞者从画面左侧缓缓走向中央,随着音乐节奏的加快,她开始旋转,裙摆随之飞扬,形成一幅动人的画面。
4.场景描述:视频背景是一个装饰着灯笼和对联的传统庭院,春日的桃花和秋日的枫叶交替出现,暗示着时间的流逝。
5.氛围营造:金色的灯光洒在舞者身上,营造出一种温暖而神秘的氛围。红色和金色的服饰与背景色彩相呼应,强调了节日的喜庆和文化的庄重。
6.时间流逝:随着舞者服饰的变化,从春到秋,场景中的植物也随之变化,从桃花到枫叶,展现了时间的流逝和故事的发展。
7.情感对比:舞者的表情从最初的平静逐渐转变为激动,通过舞蹈动作的强度变化,展现了情感的对比和冲突。
8.文化元素融入:视频中穿插着古筝和笛子的演奏,以及春节的习俗,如放鞭炮、贴春联等,将中国传统文化元素融入视频之中,增强了视频的文化氛围和深度。
步骤3:生成视频
步骤3:生成视频
使用这些提示词,文本生成视频模型将尝试创建符合这些要求的视频。结果展示如下:
第四类:图生视频(图像生成视频)类大模型
一、图生视频的提示词应考虑:
1.主体和运动:描述画面中主体的运动轨迹。
2.背景和运动:描述背景中的运动变化。
3.物理规律:运动描述应符合物理规律,尽量用图片中可能发生的运动描述。
4.简单描述:使用简单词语和句子结构,避免过于复杂的语言。
5.场景连贯性:描述与图片相差较大时,可能会引起镜头切换,需要注意场景的连贯性。
步骤1:确定生成视频的图片
首先,你需要确定你想要生成视频的图像。比如:
步骤2:编写提示词
1.主体和运动:一位穿着传统服饰的女性,手持一本打开的书,缓缓走在乡间小路上。
2.背景和运动:背景是一片金黄色的麦田,随着微风轻轻摇曳。远处有几座乡村小屋,屋顶的烟囱冒出袅袅炊烟。
3.物理规律:女性的步伐平稳,与地面接触时产生轻微的尘土。麦田中的麦穗在风的作用下自然摆动。
4.简单描述:
- 女性:传统服饰,手持书,微笑,步伐平稳。
- 麦田:金黄色,微风,摇曳。
- 小屋:远处,炊烟。
5.场景连贯性:
- 女性从画面左侧走向右侧,镜头跟随她的步伐,逐渐展示出整个麦田和小路。
- 镜头可以轻微上下移动,以展示麦田的波动和天空的变化,但保持场景的和谐与连
视频提示词示例:
开场:女性从画面左侧进入,手持书,面带微笑,步伐平稳地走在乡间小路上。
中段:镜头跟随女性的步伐,展示麦田的摇曳和远处小屋的炊烟,保持场景的连贯性。
结尾:女性走到画面右侧,镜头稍微拉远,展示整个乡村的宁静景象,然后逐渐淡出。
步骤3:生成视频
根据图像使用这些提示词,图像生成视频模型将尝试创建符合提示词这些要求的视频。结果展示如下:
遵循上述的指导原则,我们可以更精确地引导人工智能生成我们心中所想的内容。无论是文生文、文生图还是文生视频和图生视频,关键在于清晰地传达我们的意图,保持语言的简洁和逻辑的连贯,同时注意细节的丰富性和描述的准确性。通过不断的测试和迭代,我们可以优化我们的提示词,从而获得更加令人满意的生成结果。随着技术的不断进步,这些指导原则将成为我们手中强大的工具,帮助我们在创意的海洋中航行,创造出无限可能。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓