最强组合:曼巴+多模态图像融合!中科院二区直接写!

2025深度学习发论文&模型涨点之——曼巴+多模态图像融合

    高效性:Mamba本身具有线性计算复杂度,相比传统的基于Transformer的多模态融合方法,在处理大规模或长序列数据时效率更高。例如MFMamba在保持低计算复杂度的同时,实现了对多模态遥感数据的有效融合。

    精准性:通过局部和全局对齐策略,AlignMamba能够利用模态间的局部和全局关系,学习更加全面的多模态表示,从而提高融合的精准度。

    鲁棒性:在不完整的多模态融合任务中,AlignMamba也展现出了良好的性能,能够更好地应对模态缺失等情况。

    小编整理了一些曼巴+多模态图像融合

    论文】合集,以下放出部分,全部论文PDF版皆可领取。

    需要的同学

    回复“ 曼巴+多模态图像融合”即可全部领取

    论文精选

    论文1:

    Coupled Mamba: Enhanced Multi-modal Fusion with Coupled State Space Model

    耦合马尔可夫模型:基于耦合状态空间模型的增强型多模态融合

    方法

      • 耦合状态空间模型(Coupled SSM):提出了一种耦合状态空间模型,用于在保持模态内状态过程独立性的同时耦合多个模态的状态链。

        跨模态隐藏状态转移方案:设计了一种跨模态隐藏状态转移方案,当前状态不仅依赖于自身链的前一时间步状态,还依赖于相邻链的状态。

        加速耦合状态转换方案:为了完全符合硬件感知并行性,提出了加速耦合状态转换方案,并推导出相应的全局卷积核以实现并行计算。

        图片

      创新点

            • 耦合状态空间模型:通过耦合多个模态的状态链,有效捕捉模态间的动态交互,显著提升了多模态融合的效果。在CMU-MOSEI、CH-SIMS和CH-SIMSV2数据集上,分别实现了0.4%、0.9%和2.3%的F1分数提升。

              跨模态隐藏状态转移:引入跨模态隐藏状态转移机制,使模型能够动态地从其他模态获取信息,增强了模态间的互补性。

              计算效率:通过设计全局卷积核,实现了高效的并行计算,使模型在推理速度上比现有方法快49%,GPU内存使用减少83.7%。

              图片

            论文2:

            Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling

            决策马尔可夫模型:基于混合选择性序列建模的强化学习

            方法

                • 决策马尔可夫模型(DM):用马尔可夫模型替换了决策变换器(DT)的骨干网络,以提高处理长期依赖关系的效率。

                  混合决策马尔可夫模型(DM-H):提出了一种混合模型,结合了马尔可夫模型和变换器的优点,通过马尔可夫模型生成子目标,并用这些子目标提示变换器,以实现高质量的预测。

                  子目标生成与提示:马尔可夫模型从长期记忆中生成高价值的子目标,变换器利用这些子目标进行短期决策,从而实现长期和短期任务的有效结合。

                  图片

                创新点

                      • 混合模型DM-H:通过结合马尔可夫模型的长期记忆能力和变换器的高质量预测能力,显著提升了模型在长期任务中的性能。在D4RL、Grid World和Tmaze基准测试中,DM-H实现了最先进的性能。

                        子目标机制:引入子目标机制,使模型能够有效地从长期记忆中提取关键信息,显著提高了模型在长期任务中的决策效率和准确性。

                        计算效率:与基于变换器的基线相比,DM-H在长期任务的在线测试中快28倍,同时在离线训练中也表现出更高的效率。

                        图片


                      论文3:

                      MMR-Mamba: Multi-Modal MRI Reconstruction with Mamba and Spatial-Frequency Information Fusion

                      MMR-Mamba:基于马尔可夫模型和时空信息融合的多模态MRI重建

                      方法

                      • 目标模态引导的交叉马尔可夫模型(TCM):在空间域中设计了TCM模块,通过选择性地整合参考模态的相关信息来最大程度地恢复目标模态信息。

                        选择性频率融合(SFF)模块:在频率域中引入SFF模块,通过元素级求和对相位谱进行融合,并对幅度谱进行选择性融合,以恢复高频信号并重建结构细节。

                        自适应时空信息融合(ASFF)模块:通过补充一个域中信息量较少的通道与另一个域中相应的通道,增强两个域中的特征,实现时空信息的相互增强。

                        图片

                      创新点

                            • TCM模块:通过交叉马尔可夫块选择性地补充参考模态信息,显著提高了目标模态的重建质量。在4×加速下,PSNR从38.45 dB提高到39.05 dB;在8×加速下,PSNR从35.72 dB提高到36.17 dB。

                              SFF模块:在频率域中有效地整合全局信息,恢复高频信号,显著提高了重建图像的结构细节。在4×加速下,PSNR从40.06 dB提高到40.49 dB;在8×加速下,PSNR从37.01 dB提高到37.22 dB。

                              ASFF模块:通过自适应地融合时空信息,进一步增强了特征的互补性,提高了重建图像的质量。在4×加速下,PSNR从40.49 dB提高到40.98 dB;在8×加速下,PSNR从37.22 dB提高到37.75 dB。

                              图片


                            论文4:

                            Multimodal Alignment and Fusion: A Survey

                            多模态对齐与融合:综述

                            方法

                              • 多模态对齐:通过显式和隐式方法建立不同模态之间的语义关系,确保各模态的表示在共同空间中对齐。

                                多模态融合:将不同模态的信息整合成统一的预测,利用各模态的优势来提高整体模型性能。

                                显式对齐:使用相似性矩阵直接测量模态间的关系,如动态时间弯曲(DTW)和典型相关分析(CCA)。

                                图片

                              创新点

                                    • 多模态对齐方法的系统分类:对显式和隐式对齐方法进行了系统分类,为多模态学习提供了清晰的框架。

                                      多模态融合方法的全面分析:对早期、晚期和混合融合方法进行了全面分析,并介绍了基于核方法、图模型和注意力机制的先进融合框架。

                                      多模态学习的挑战分析:深入分析了多模态数据整合中的挑战,包括对齐问题、噪声鲁棒性和特征表示差异,并提出了相应的解决方案。

                                      图片

                                    小编整理了曼巴+多模态图像融合文代码合集

                                    需要的同学

                                    回复“曼巴+多模态图像融合”即可全部领取

                                    评论
                                    添加红包

                                    请填写红包祝福语或标题

                                    红包个数最小为10个

                                    红包金额最低5元

                                    当前余额3.43前往充值 >
                                    需支付:10.00
                                    成就一亿技术人!
                                    领取后你会自动成为博主和红包主的粉丝 规则
                                    hope_wisdom
                                    发出的红包
                                    实付
                                    使用余额支付
                                    点击重新获取
                                    扫码支付
                                    钱包余额 0

                                    抵扣说明:

                                    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                                    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                                    余额充值