Ollama + AnythingLLM + LLM Studio部署实践

1. ollama部署

Ollama 是一个用于在本地运行大型语言模型的工具,比如llama2、千文qwen、mistral等,可以在Windows、Linux、MacOS系统上进行部署。下面将介绍如何在不同操作系统上安装和使用 Ollama。

官网:ollama.com

Github:github.com/ollama/olla…

2. ollama部署

本文安装环境为:Windows10专业版

下载: Ollama下载地址:ollama.com/download

现在Ollama已经安装完了,我们需要在终端中输入下方命令运行一个大语言模型进行测试,这里以对在中文方面表现相对好些的千问为例,大家也可以使用其他的模型。

2.1 模型下载运行

下并运行模型,这里选择一个比较小的本机运行
ollama run gemma:2b

这里还有很多支持的模型查询: ollama.com/library

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

2.2 ui界面搭配

这里很多教程推荐open webUI来配合使用,这里的目的是方便的切换模型;安装Docker

windows上面安装Docker,需要安装wsl虚拟环境;如果是Windows请使用WSL2(2虚拟了完整的Linux内核,相当于Linux)Linux安装

open-webui/open-webui: User-friendly WebUI for LLMs (Formerly Ollama WebUI) 地址:github.com/open-webui/…

2.3 模型地址修改

3. API介绍:

  1. REST API

除了命令行,Ollama 默认提供了一个 REST API 端口,允许用户通过 API 调用和管理模型。

生成补全

curl http://localhost:11434/api/generate -d '{
  "model": "gemma:2b",
  "prompt":"为什么天空是蓝的?"
}'

生成聊天补全

curl http://localhost:11434/api/chat -d '{
  "model": "gemma:2b",
  "messages": [
    { "role": "user", "content": "为什么天空是蓝的?" }
  ]
}'

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 使用 OllamaAnythingLLM 部署个人数据库 #### 准备工作 为了成功部署个人数据库,需先确保已安装并配置好 OllamaAnythingLLM 的环境。对于 Windows 用户,在完成安装之后可以通过命令 `ollama serve` 或者通过点击开始菜单中的相应选项来启动 Ollama 服务[^3]。 #### 数据准备与导入 利用 AnythingLLM 中的收集器工具,可以方便地把各种形式的数据源转化为适合大型语言模型使用的格式。此工具基于 Python 开发,适用于多种类型的文件以及网络资料,便于用户快速整理所需的信息资源[^1]。 #### 构建前端界面 借助 ViteJS 加上 React 技术栈构建而成的前端平台使得操作变得直观简便。该前端应用允许使用者轻松创建、编辑及维护供 LLM 处理的内容集合。这一步骤有助于提高用户体验,并简化后续管理工作流程。 #### 后端配置和服务启动 后端采用 NodeJS 结合 Express 实现的服务层负责协调向量数据库的操作并向 LLM 提供必要的接口支持。当一切就绪后,可通过执行特定脚本或按照官方指南指示开启服务器实例,从而正式启用整个系统功能。 ```bash # 示例:启动OLLAMA服务 ollama serve ``` 一旦上述各环节均已完成,则意味着已经成功搭建起了一个可供私人使用的知识库解决方案。这样的架构不仅实现了数据的有效管理和智能化检索,同时也为用户提供了一个灵活易用的应用框架[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值