对比学习爆火!与时间序列结合轻松登顶NIPS!

AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!

2025深度学习发论文&模型涨点之——对比学习+时间序列

  • 对比学习:对比学习是一种自监督学习方法,通过构建正负样本对,最大化正样本对之间的相似性,最小化负样本对之间的相似性,从而学习数据的表征。这种方法在计算机视觉和自然语言处理领域取得了显著的成功,近年来也被应用于时间序列数据。

  • 时间序列:时间序列是按照时间顺序排列的一组数据点,通常用于研究某一现象随时间的变化规律。时间序列数据本质上反映的是某个或某些随机变量随时间不断变化的趋势。

小编整理了一些对比学习+时间序列论文】合集,以下放出部分,全部论文PDF版皆可领取。

需要的同学

回复“对比学习+时间序列 ”即可全部领取

论文精选

论文1:

Finding Order in Chaos: A Novel Data Augmentation Method for Time Series in Contrastive Learning

在混沌中寻找秩序:一种用于对比学习中时间序列的新数据增强方法

方法

    • 新型数据增强方法:提出了一种针对准周期时间序列任务的新数据增强方法,旨在连接同类样本,从而在潜在空间中找到秩序。

    • 基于mixup技术的改进:该方法基于著名的mixup技术,通过引入一种新的方法来考虑非平稳时间序列的周期性。

    • 控制数据增强的混乱程度:通过控制数据增强所创造的混乱程度,该方法能够改善特征表示和下游任务的性能。

    • 变分自编码器(VAE)的使用:利用VAE学习数据的解耦表示,通过控制每对样本的mixup比例,基于它们在潜在空间中的距离,来防止过度增强。

      图片

    创新点

        • 提出新型mixup方法:针对非平稳准周期时间序列数据,考虑相位和幅度作为两个独立特征来生成样本,增强了类内相似性,帮助对比学习学习类分离表示。在三个时间序列任务(心率估计、人体活动识别和心血管疾病检测)中,与先前的最佳方法相比,平均性能提升了10.1%。

        • 采样mixup系数的新方法:基于潜在空间中的相似性采样每对的mixup系数,该潜在空间是在无监督的情况下构建的,用于防止样本之间的过度增强。这种方法在三个任务中均显示出一致性,与先前的mixup技术相比,性能提升显著,平均提升了20.8%。

        • 性能提升:与先前的最优/硬正样本生成方法相比,在三个任务中的七个数据集中表现出色,剩余数据集的性能差距也很小,平均性能提升了10.1%。

          图片

        论文2:

        FOCAL: Contrastive Learning for Multimodal Time-Series Sensing Signals in Factorized Orthogonal Latent Space

        FOCAL:在分解正交潜在空间中用于多模态时间序列传感信号的对比学习

        方法

            • 分解正交潜在空间编码:将每种模态的时间序列编码到一个由共享特征和私有特征组成的分解潜在空间中,共享空间强调跨模态的一致性,私有空间提取模态独有的信息。

            • 模态特征的时间结构约束:提出了一种时间结构约束,使得时间邻近样本的平均距离不大于时间距离较远样本的平均距离。

            • 对比学习任务:在共享空间和私有空间中分别应用对比学习任务,以捕获不同方面的信息。

              图片

            创新点

                  • 模态信息的全面提取:通过同时考虑模态一致性和模态独有的信息,FOCAL能够从多模态传感信号中提取更全面的特征,与CMC相比,在准确率上提升了4.48%到18.01%。

                  • 时间信息局部性的适当处理:通过提出的时间结构约束,FOCAL能够更好地处理时间序列中的时间信息局部性,加速了预训练的收敛,并在不同标签比例下的一致性优于其他基线。

                  • 性能提升:在四个多模态传感数据集上,FOCAL在下游任务中的一致性优于11个最先进的基线,平均准确率和F1分数均有所提高。例如,在MOD数据集上,FOCAL在1%标签比例下比最佳基线相对提升了10.56%。

                    图片


                  论文3:

                  PrimeNet: Pre-training for Irregular Multivariate Time Series

                  PrimeNet:不规则多变量时间序列的预训练

                  方法

                  • 时间敏感的对比学习和数据重建任务:设计了基于对比学习和数据重建的时间敏感任务,以从完全未标记的不规则时间序列数据中学习自监督表示。

                  • 时间切片策略:采用时间切片策略,将时间序列切分为包含相等数量读数的切片,用于对比学习的数据增强。

                  • 固定时间掩码技术:提出了一种固定时间掩码技术,始终掩码相同持续时间的数据,以适应不同采样密度区域的重建。

                    图片

                  创新点

                        • 不规则时间序列的自监督学习:PrimeNet是第一个针对不规则多变量时间序列的预训练模型,通过时间敏感的任务学习表示,显著优于现有的全监督和半监督方法。

                        • 时间敏感的数据增强:通过时间切片和固定时间掩码技术,PrimeNet能够更好地捕捉不规则时间序列的采样密度变化,提高了表示学习的质量。

                        • 性能提升:在医疗保健和物联网应用中的自然不规则和异步数据上,PrimeNet在多个下游任务(包括分类、插值和回归)中显著优于最先进的方法。例如,在PhysioNet数据集上,PrimeNet在1-shot设置下的AUC分数比TNC高出约8.6%,在MIMIC-III数据集上比mTAND高出约6.3%。

                          图片


                        论文4:

                        TimesURL: Self-supervised Contrastive Learning for Universal Time Series Representation Learning

                        TimesURL:用于通用时间序列表示学习的自监督对比学习

                        方法

                          • 频率-时间增强(FTAug):提出了一种新的频率-时间增强方法,通过时间域的裁剪和频率域的混合来保持时间属性不变。

                          • 双重Universums:设计了双重Universums作为特殊的硬负样本,以增强对比学习的性能。

                          • 时间重建:引入时间重建作为对比学习的联合优化目标,以捕获段级和实例级信息。

                            图片

                          创新点

                              • 保持时间属性的增强方法:FTAug方法通过频率混合和随机裁剪保持时间序列的重要时间关系和语义一致性,适用于各种下游任务。

                              • 硬负样本的引入:通过引入双重Universums,增加了硬负样本的数量和质量,提高了对比学习的性能。在ERing数据集上,使用Universums的TimesURL在下游任务中的性能从0.896提升到0.985。

                              • 性能提升:TimesURL在六个下游任务(包括短期和长期预测、插值、分类、异常检测和迁移学习)中均取得了最先进的性能。例如,在30个UEA数据集上,TimesURL的平均准确率比之前的最佳自监督方法InfoTS高出3.8%。

                              图片

                              小编整理了对比学习+时间序列文代码合集

                              需要的同学

                              回复“对比学习+时间序列 ”即可全部领取

                              评论
                              添加红包

                              请填写红包祝福语或标题

                              红包个数最小为10个

                              红包金额最低5元

                              当前余额3.43前往充值 >
                              需支付:10.00
                              成就一亿技术人!
                              领取后你会自动成为博主和红包主的粉丝 规则
                              hope_wisdom
                              发出的红包
                              实付
                              使用余额支付
                              点击重新获取
                              扫码支付
                              钱包余额 0

                              抵扣说明:

                              1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                              2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                              余额充值