PCL点云分割:Region Growing Segmentation

本文详细介绍了PCL库中的Region Growing Segmentation算法,适用于分割规则物体,如房屋轮廓。算法通过设置聚类点数、搜索范围、面平滑阈值和曲率阈值进行点云分割。在实际应用中,调整这两个阈值对分割效果影响显著,过高或过低都可能导致分割失败。面对有噪声的点云和物体转折处,算法表现欠佳,调参要求较高,鲁棒性和普适性较低。
摘要由CSDN通过智能技术生成

背景:

pcl官方教程:http://www.pointclouds.org/documentation/tutorials/region_growing_segmentation.php#region-growing-segmentation


1. 使用感受

这个算法适合分割规则的物体或者说四四方方的东西,像房屋轮廓,纸箱折叠的情景。如官方给的效果图:

这个算法主要有4个参数来设置,我个人觉得算法还算是使用者友好的。主要要设置聚类点数上下界,蔓延时候搜索出来多少个附近点,面平滑阈值还有面的曲率阈值。


2. 算法细节

为了了解设置这些参数,让我们来了解一下如何内部细节。从官方的介绍里,算法的流程是写的很仔细的。为了让你更直观的明白,我概括的来说,就是从曲率小的面播种,从种子的位置出发,开始往四周搜索点,然后比对点于点之间的曲率和法线方向,如果差距小于阈值就视为同一个cluster。如果一个cluster无法再蔓延,在剩下的点云里再找曲率小的面播种,然后继续重复直到遍历完毕。


3. 调参

面平滑阈值(用于对比法线)还有面的曲率阈值(用于对比曲率)是最重要的参数。如果调大了,不仅仅是同一个平面,两个平面(它们的连着处弧度变化小的)都被视为同一个cluster.

可以参考

ht
pcl点云库(Point Cloud Library)是一个开源的库,用于处理三维点云数据。而DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,适用于点云数据的聚类任务。 要使用pcl库进行点云DBSCAN聚类,你可以按照以下步骤进行: 1. 导入pcl库,并读取点云数据。 2. 对点云数据进行预处理,例如滤波、降采样等,以提高聚类效果和性能。 3. 创建pcl::search::KdTree对象,用于点云数据的最近邻搜索。 4. 定义DBSCAN参数,例如邻域半径和最小点数等。 5. 使用pcl::RegionGrowing对象执行DBSCAN聚类,将点云数据分成不同的类别。 6. 可选地,根据聚类结果对点云进行可视化或后续处理。 具体实现代码如下所示(假设已经读取了点云数据到pcl::PointCloud<pcl::PointXYZ>对象中): ```cpp #include <pcl/point_cloud.h> #include <pcl/point_types.h> #include <pcl/search/kdtree.h> #include <pcl/segmentation/region_growing.h> int main() { // 读取点云数据到pcl::PointCloud<pcl::PointXYZ>对象中 // 创建pcl::search::KdTree对象 pcl::search::Search<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>); tree->setInputCloud(cloud); // 定义DBSCAN参数 float eps = 0.3; // 邻域半径 int minPts = 10; // 最小点数 // 创建pcl::RegionGrowing对象 pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg; reg.setMinClusterSize(minPts); reg.setMaxClusterSize(100000); reg.setSearchMethod(tree); reg.setNumberOfNeighbours(30); reg.setInputCloud(cloud); // 执行DBSCAN聚类 std::vector<pcl::PointIndices> clusters; reg.extract(clusters); // 可选:对聚类结果进行可视化或后续处理 return 0; } ``` 以上代码仅为一个简单示例,具体实现还需根据你的点云数据和需求进行调整。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值