【CARLA学习记录】——参考官方文档

参考:CARLA官方文档

1 CARLA的第一步

CARLA 中的一个标准工作流程:

从启动服务器和连接客户端,到添加车辆、传感器和生成用于机器学习的训练数据。本教程旨在通过使用 CARLA 生成机器学习训练数据的关键步骤,尽可能有效地了解细节。有关工作流程各部分的进一步详情,例如蓝图库中有多种车辆,或可供选择的传感器类型,请参阅文本中的链接或浏览左侧菜单。

1.1 启动CARLA

./CarlaUE4.sh

为了通过 Python API 操作 CARLA,我们需要通过一个开放端口将 Python 客户机连接到服务器。客户端通过客户端和世界对象控制模拟器打开一个 Python 笔记本或创建一个新的脚本,然后在脚本或主函数的开头添加以下代码:

import carla
import random
# 连接客户端并检索与之相关的世界对象
client = carla.Client('localhost', 2000)
world = client.get_world()

客户端对象用于维护客户端到服务器的连接,并具有许多用于应用命令和加载或导出数据的功能。我们可以使用客户端对象加载替代映射或重新加载当前映射(重置为初始状态)。
端口可以选择为任何可用的端口,默认情况下设置为2000,您还可以使用计算机的 IP 地址选择不同于本地主机的主机。这样,CARLA 服务器可以在联网的计算机上运行,而 python 客户机可以在个人计算机上运行。

1.2 载入地图

在 CARLA API 中,世界对象提供对模拟的所有元素的访问,包括地图、地图中的对象,如建筑物、交通灯、车辆和行人。CARLA 服务器通常加载一个默认映射(通常是 Town10)。如果希望使用替代映射启动 CARLA,请使用 config.py 脚本:(在PythonAPI的util文件里)

./config.py --map Town05

还可以使用 world 对象从客户端加载映射:

client.load_world('Town05')

1.3 观众导航

打开CARLA 默认就是观众模式
不多说常见几个按键:
Q E A D W S Shift
可以通过 Python API 访问和操作观众及其属性:

# 检索观众对象
spectator = world.get_spectator()

# 通过变换获得观众的位置和旋转
transform = spectator.get_transform()

location = transform.location
rotation = transform.rotation

# 给观众设置一个空变换
spectator.set_transform(carla.Transform(
强化学习是一种机器学习方法,它通过试错来学习如何在特定环境中采取行动以最大化奖励。CARLA是一个开源的自动驾驶仿真平台,可以用于测试和评估自动驾驶算法。下面是使用强化学习CARLA中实现自动驾驶的一些步骤: 1. 安装CARLA和Python API ```shell # 安装CARLA wget https://carla-releases.s3.eu-west-3.amazonaws.com/Linux/CARLA_0.9.11.tar.gz tar -xvf CARLA_0.9.11.tar.gz # 安装Python API pip install pygame numpy networkx scipy matplotlib git clone https://github.com/carla-simulator/carla.git cd carla/PythonAPI/carla/dist easy_install carla-0.9.11-py3.7-linux-x86_64.egg ``` 2. 创建CARLA环境 ```python import carla # 连接到CARLA服务器 client = carla.Client('localhost', 2000) client.set_timeout(10.0) # 获取CARLA世界 world = client.get_world() # 设置天气和时间 weather = carla.WeatherParameters(cloudiness=10.0, precipitation=10.0, sun_altitude_angle=70.0) world.set_weather(weather) world.set_sun_position(carla.Location(x=0.0, y=0.0, z=0.0)) # 创建车辆和摄像头 blueprint_library = world.get_blueprint_library() vehicle_bp = blueprint_library.filter('vehicle.tesla.model3')[0] spawn_point = carla.Transform(carla.Location(x=50.0, y=0.0, z=2.0), carla.Rotation(yaw=180.0)) vehicle = world.spawn_actor(vehicle_bp, spawn_point) camera_bp = blueprint_library.find('sensor.camera.rgb') camera_transform = carla.Transform(carla.Location(x=1.5, z=2.4)) camera = world.spawn_actor(camera_bp, camera_transform, attach_to=vehicle) ``` 3. 实现强化学习算法 这里我们以Deep Q-Network (DQN)为例,使用Keras实现神经网络。 ```python import keras from keras.models import Sequential from keras.layers import Dense, Flatten from keras.optimizers import Adam class DQNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) self.gamma = 0.95 self.epsilon = 1.0 self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.001 self.model = self._build_model() def _build_model(self): model = Sequential() model.add(Flatten(input_shape=(1,) + self.state_size)) model.add(Dense(24, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(self.action_size, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) act_values = self.model.predict(state) return np.argmax(act_values[0]) def replay(self, batch_size): minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = reward if not done: target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0])) target_f = self.model.predict(state) target_f[0][action] = target self.model.fit(state, target_f, epochs=1, verbose=0) if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay # 初始化DQNAgent state_size = (800, 600, 3) action_size = 3 agent = DQNAgent(state_size, action_size) # 训练DQNAgent for e in range(EPISODES): state = env.reset() state = np.reshape(state, [1, 1] + list(state_size)) for time in range(500): action = agent.act(state) next_state, reward, done, _ = env.step(action) next_state = np.reshape(next_state, [1, 1] + list(state_size)) agent.remember(state, action, reward, next_state, done) state = next_state if done: break if len(agent.memory) > batch_size: agent.replay(batch_size) ``` 4. 运行CARLA仿真 ```shell ./CarlaUE4.sh -windowed -carla-server -benchmark -fps=20 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值