汽车运动学公式

汽车二自由度运动学公式

二自由度汽车运动学模型公式如下:

横向运动:
v ˙ = a y \dot{v}=a_y v˙=ay
r ˙ = a y V + F f , max ⁡ ⋅ L f − F r , max ⁡ ⋅ L r V ⋅ I \dot{r}=\frac{a_y}{V}+\frac{F_{f,\max}\cdot L_f-F_{r,\max}\cdot L_r}{V\cdot I} r˙=Vay+VIFf,maxLfFr,maxLr

纵向运动:
V ˙ = F x , max ⁡ − F x m \dot{V}=\frac{F_{x,\max}-F_x}{m} V˙=mFx,maxFx
x ˙ = V \dot{x}=V x˙=V

其中, a y a_y ay为横向加速度, r r r为横向偏移角, V V V为车速, F f , max ⁡ F_{f,\max} Ff,max为前轮最大纵向力, F r , max ⁡ F_{r,\max} Fr,max为后轮最大纵向力, L f L_f Lf为前轮到质心的距离, L r L_r Lr为后轮到质心的距离, I I I为车辆的转动惯量, F x F_x Fx为驱动力, m m m为车辆质量。

线性二次型调节器 LQR的理论推导

LQR是线性二次型调节器的简称,它是一种基于状态反馈的自适应控制方法。LQR的基本思想是通过对状态量的反馈控制来优化系统的动态性能,使系统的状态能够稳定在指定的状态。

LQR的理论推导基于最小二乘估计的思想。假设系统的状态方程为:

x ˙ = A x + B u \dot x = Ax + Bu x˙=Ax+Bu

其中, x x x是系统的状态向量, u u u为控制输入, A A A B B B是系统的状态转移矩阵和控制矩阵,满足系统稳定的充分条件是矩阵 A A A的所有特征值都处于左半平面。

我们的目标是设计一个反馈控制器,使得系统的状态能够稳定在指定的状态,并且具有最小的控制能量消耗。这个目标可以用一个二次型函数表示:

J = ∫ 0 ∞ x T Q x + u T R u d t J= \int_{0}^{\infty} x^TQx + u^TRu dt J=0xTQx+uTRudt

其中, Q Q Q R R R是正定矩阵,它们的选择可以决定控制器的设计。 Q Q Q表示系统状态的重要性, R R R表示控制能量的重要性。

我们可以通过最小化函数 J J J来求解控制器的设计,为了实现这个目标,我们需要定义一个代价函数:

V ( x , t ) = x T P x V(x,t) = x^TPx V(x,t)=xTPx

其中, P P P是一个对称的正定矩阵,它满足以下矩阵代数方程:

A P + P A T + Q = 0 AP + PA^T + Q = 0 AP+PAT+Q=0

这个方程称为Riccati方程,通过求解这个方程,我们可以得到矩阵 P P P的解析形式。然后,控制器的设计可以表示为:

u = − R − 1 B T P x u = -R^{-1}B^TPx u=R1BTPx

通过将这个控制器代入代价函数 J J J中,我们可以得到最小化控制能量的目标。最后,我们可以选择一个适当的控制增益矩阵 K K K来实现控制器的设计:

K = R − 1 B T P K = R^{-1}B^TP K=R1BTP

这样,我们就得到了LQR的理论推导方法。LQR是一种非常有效的自适应控制方法,在很多控制系统中得到了广泛应用。

二自由度汽车模型:

二自由度汽车模型是一种简化的汽车运动模型,假设汽车沿着一条直线运动,只有两个可控制的自由度,即车体质心位置和方向角。该模型忽略了车轮与地面间的纵向动力学影响,也不考虑车辆的摆动运动。

车辆路径方程:

y ˙ ( t ) = u ( t ) cos ⁡ ( θ ( t ) ) \dot{y}(t) = u(t) \cos(\theta(t)) y˙(t)=u(t)cos(θ(t))

x ˙ ( t ) = u ( t ) sin ⁡ ( θ ( t ) ) \dot{x}(t) = u(t) \sin(\theta(t)) x˙(t)=u(t)sin(θ(t))

车体模型方程:

v ˙ ( t ) = F f + F r − m θ ˙ ( t ) v ( t ) m \dot{v}(t) = \frac{F_f + F_r - m\dot{\theta}(t)v(t)}{m} v˙(t)=mFf+Frmθ˙(t)v(t)

θ ˙ ( t ) = l ( F f − F r ) − I z θ ˙ ( t ) v ( t ) I z \dot{\theta}(t) = \frac{l(F_f - F_r) - I_z\dot{\theta}(t)v(t)}{I_z} θ˙(t)=Izl(FfFr)Izθ˙(t)v(t)

其中, v v v 表示车辆速度, θ \theta θ 表示车辆方向角, u u u 表示油门踏板开度, m m m 表示车辆质量, l l l 表示前后轴距, I z I_z Iz 表示车辆绕垂直轴的惯性矩, F f F_f Ff F r F_r Fr 分别表示前后轮的侧向力。

三自由度汽车模型:

三自由度汽车模型考虑了车轮与地面间的纵向动力学影响,即车辆加速度对车轮滑移的影响。该模型比二自由度模型更加精确,可以更好地描述车辆的运动特性。

车辆路径方程:

y ˙ ( t ) = u ( t ) cos ⁡ ( θ ( t ) ) − v ( t ) sin ⁡ ( β ( t ) ) \dot{y}(t) = u(t) \cos(\theta(t)) - v(t)\sin(\beta(t)) y˙(t)=u(t)cos(θ(t))v(t)sin(β(t))

x ˙ ( t ) = u ( t ) sin ⁡ ( θ ( t ) ) + v ( t ) cos ⁡ ( β ( t ) ) \dot{x}(t) = u(t) \sin(\theta(t)) + v(t)\cos(\beta(t)) x˙(t)=u(t)sin(θ(t))+v(t)cos(β(t))

车体模型方程:

v ˙ ( t ) = F f + F r − m θ ˙ ( t ) v ( t ) m − g sin ⁡ ( θ ( t ) ) + C r F z r − F t m \dot{v}(t) = \frac{F_f + F_r - m\dot{\theta}(t)v(t)}{m} - g\sin(\theta(t)) + \frac{C_rF_zr - F_t}{m} v˙(t)=mFf+Frmθ˙(t)v(t)gsin(θ(t))+mCrFzrFt

θ ˙ ( t ) = l ( F f − F r ) − I z θ ˙ ( t ) v ( t ) I z \dot{\theta}(t) = \frac{l(F_f - F_r) - I_z\dot{\theta}(t)v(t)}{I_z} θ˙(t)=Izl(FfFr)Izθ˙(t)v(t)

ω ˙ ( t ) = C a ( F f − F r ) − C d 1 ω ( t ) − C d 2 ω ( t ) 2 I w \dot{\omega}(t) = \frac{C_a(F_f - F_r) - C_{d1}\omega(t) - C_{d2}\omega(t)^2}{I_w} ω˙(t)=IwCa(FfFr)Cd1ω(t)Cd2ω(t)2

其中, v v v 表示车辆速度, θ \theta θ 表示车辆方向角, u u u 表示油门踏板开度, m m m 表示车辆质量, l l l 表示前后轴距, I z I_z Iz 表示车辆绕垂直轴的惯性矩, F f F_f Ff F r F_r Fr 分别表示前后轮的侧向力, β \beta β 表示滑移角, F t F_t Ft 表示车辆牵引力, g g g 表示重力加速度, C r C_r Cr 表示车辆滚动阻力系数, F z r F_zr Fzr 表示后轮受力垂直分力, C a C_a Ca 表示车轮阻力系数, C d 1 C_{d1} Cd1 C d 2 C_{d2} Cd2 分别为车轮的线性和二次阻力系数, I w I_w Iw 表示车轮转动惯量。

魔术轮胎

也叫马氏圆轮胎,是一种特殊的轮胎,其外层呈环形凸起,使轮胎与地面接触的面积变小,减少了摩擦力,从而提高了汽车的加速性能和燃油经济性。

公式上,魔术轮胎的影响可以用以下几个参数来表示:

  1. 轮胎半径(r):魔术轮胎底面的实际半径会变小,这会影响车辆的速度。

  2. 胎面高度(h):魔术轮胎底部的凸出部分高度不同,对于轮胎的舒适性、稳定性和噪音产生影响。

  3. 胎面凸起角度(θ):这个角度越大,轮胎与地面接触的部分就越小,从而减少了摩擦力,提高了加速性能和燃油经济性。

根据上述参数,魔术轮胎的公式为:

P = 2πr(h - r cosθ)

其中P表示轮胎底部的真实厚度或与路面的接触面积。

魔术轮胎的物理建模公式包括以下几个方面:

  1. 胎压与变形关系:魔术轮胎的变形受到胎压的影响,一般情况下,胎压越高,轮胎的变形越小。这一关系可以用下面的公式表示:

f ( P ) = K × P f(P)=K \times P f(P)=K×P

其中, P P P为胎压, K K K为轮胎的刚度系数, f ( P ) f(P) f(P)为胎压与变形的关系函数。

  1. 滚动阻力:魔术轮胎在滚动过程中会遇到空气阻力、摩擦力等阻力,这些阻力会影响轮胎的滚动性能。滚动阻力可以用下面的公式描述:

F D = 0.5 ρ A C D V 2 F_D=0.5\rho AC_DV^2 FD=0.5ρACDV2

其中, ρ \rho ρ为空气密度, A A A为轮胎的横截面积, C D C_D CD为轮胎的阻力系数, V V V为轮胎的速度。通过该公式可以计算出轮胎在滚动过程中所受到的阻力大小。

  1. 弯曲刚度:魔术轮胎在转弯时会受到横向力的促使,这时轮胎的变形情况会出现明显的变化。弯曲刚度可以用下面的公式描述:

K f l e x = 3 E I l 3 K_{flex}=\dfrac{3EI}{l^3} Kflex=l33EI

其中, E E E为轮胎的杨氏模量, I I I为轮胎的截面二阶矩, l l l为轮胎的长度。通过该公式可以计算出轮胎在转弯过程中的弯曲刚度。

  1. 轮胎的几何形状:通过对轮胎的形状进行建模,可以计算出轮胎在不同工况下的接地面积、半径等参数,从而对魔术轮胎的性能进行评估。

综上所述,魔术轮胎的物理建模公式与传统轮胎有一定的差异,需要对其特殊性质进行分析与建模。

系统状态方程

是描述动态系统行为的数学模型。它包含了所有关于系统状态及其随时间演变的信息。一般而言,系统状态方程用微分方程或差分方程表示。其形式可写成:

                                          x' = f(x, u)

其中,x是系统状态向量,u是系统输入向量,f是状态转移函数。系统状态方程可以用于分析和预测系统的行为,优化系统性能等

车辆的运动学模型和动力学模型 是两种不同的建模方式,主要区别如下:

  1. 运动学模型关注的是车辆的运动状态和姿态,而动力学模型则考虑了车辆受到的力和力矩,研究车辆的加速度和力学响应等更加详细的物理特性。

  2. 运动学模型中通常包括车辆的位置、速度、加速度、转向角等动态参数,主要用于评估车辆的操纵性能和运动规律。而动力学模型则重点考虑车辆的质量、阻力、摩擦力、引擎功率等因素,分析车辆的行驶能力和性能指标。

  3. 运动学模型一般是基于几何学和运动学原理建立的,可以较容易地获得解析解或数值解,而动力学模型需要用到牛顿定律、动力学方程等更加复杂的数学模型,需要更加深入的物理和数学知识。

总的来说,运动学模型更适用于描述车辆的运动规律和运动特性,而动力学模型则更适合用于分析车辆的动力性能和力学行为。两种模型可以相互补充,共同用于车辆的设计、控制和优化等方面。

控制是指对某个对象或系统的运行状态进行调节和管理的过程。被控对象就是需要被控制的目标,可以是一台机器、一个设备、一个过程或一个系统。控制系统通过测量被控对象的状态量,如温度、压力、速度等,获取实时的运行状态,并根据设定的控制量,如温度设定值、压力设定值、速度设定值等,对被控对象进行控制,使其达到预期的运行状态。

状态量和控制量之间的联系体现在反馈环节中。控制系统通过传感器等手段获取被控对象的实时状态量,并将其与设定值进行比较,计算出误差信号。通过比例、积分和微分等数学运算,得到控制量,并通过执行器作用于被控对象,从而控制其运行状态。

这种通过状态量的反馈控制系统的方法被称为反馈控制。反馈控制系统能够实现对被控对象的精确控制,包括对环境变化的适应性和鲁棒性,使得系统能够稳定运行并且具有较高的性能指标。因此,反馈控制是现代控制工程中最基本的控制方法之一。

状态空间方程

是描述一个线性时不变系统动态行为的数学模型。它包含状态方程和输出方程两部分。

状态方程描述了系统的状态随时间演变的规律。它通常写作:

x’ = Ax + Bu

其中,x是系统的状态变量向量,A是状态转移矩阵,描述状态向量如何随时间演变,u是输入变量向量,B是输入矩阵,描述输入变量对状态向量的影响。

输出方程描述了系统输出的规律。它通常写作:

y = Cx + Du

其中,y是系统的输出变量向量,C是输出矩阵,描述系统的状态向量和输入向量如何影响输出变量,D是直接通道矩阵,描述输入变量直接对输出变量的影响。

状态空间方程描述了系统的全局动态行为,可以用来分析系统的稳定性、控制性能等。对于非线性系统,也可以通过线性化来使用状态空间方程描述其动态行为。

卡尔曼滤波是一种用于估计状态及其随时间的变化的过程的数学方法。它最初由R. E. Kalman在1960年提出,被广泛应用于控制系统、信号处理、机器人导航、图像处理等领域。卡尔曼滤波通过利用测量信息和系统模型,根据贝叶斯概率理论进行状态估计和状态预测,从而提高对系统状态的估计精度和可靠性。

卡尔曼滤波的主要公式包括:

  1. 状态方程:x(k+1) = Fx(k) + Bu(k) + w(k)

其中,x表示系统状态向量,F为状态转移矩阵,u表示系统控制向量,B为控制增益矩阵,w为状态噪声。

  1. 观测方程:z(k) = Hx(k) + v(k)

其中,z表示观测向量,H为观测矩阵,v为观测噪声。

  1. 卡尔曼增益:K(k) = P(k|k-1)H^T(H P(k|k-1)HT+R){-1}

其中,K为卡尔曼增益,P为状态协方差矩阵,R为观测噪声协方差矩阵。

  1. 状态估计:x(k|k) = x(k|k-1) + K(k)(z(k)-Hx(k|k-1))

其中,x(k|k)为状态估计值,x(k|k-1)为状态预测值。

  1. 协方差更新:P(k|k) = (I-K(k)H)P(k|k-1)

其中,P(k|k)为状态协方差矩阵更新后的值。

以上公式构成了卡尔曼滤波的基本框架,实际应用中还需要根据具体情况进行参数调整和算法优化。

现代控制理论

是利用数学方法系统地研究控制问题的一种学科。其主要内容包括以下几个方面:

  1. 系统建模:现代控制理论的第一步是对控制对象进行建模。这包括把控制对象抽象成数学模型,建立系统的状态方程和输出方程。

  2. 联合分析:联合分析是现代控制理论的核心。它研究如何设计控制算法,使得系统在满足一定性能指标的同时,拥有较高的稳定性和鲁棒性。

  3. 控制器设计:控制器设计是现代控制理论的重要内容。根据系统模型和控制目标,设计出合适的控制器,并进行分析和优化。

  4. 优化控制:现代控制理论也包括优化控制。它研究如何设计控制器,使得系统在最短时间内到达稳态,并保持在某种最优状态下工作。

  5. 智能控制:智能控制是现代控制理论的新发展方向,它研究如何利用人工智能和机器学习等技术提高控制算法的性能,实现更加智能化的控制。

总之,现代控制理论是一个包含众多学科和领域的复杂系统,它不断地吸收新的理论和技术,为实现优化的控制效果提供了坚实的理论基础。

傅里叶变换

傅里叶变换是一种将时域信号(例如音频或视频)转换成频域信号的数学工具。它基于一种分解信号的方法,即将复杂的、周期性的信号分解成一系列简单的正弦波、余弦波或复指数函数的叠加。这个过程就是把信号在频域中进行分解,得到每个频率成分的频谱。

在傅里叶变换中,一个信号可以表示为频率幅度的谱图,每个频率成分对应的振幅和相位表示了原始信号中该频率成分的贡献。傅里叶变换可以用于许多应用,例如音频信号压缩和图像处理。

如何理解傅里叶变化里的时域和频域

傅里叶变换可以将一个信号从时域(时间域)转换成频域(频率域)。在时域中,我们可以看到信号在不同的时间点上的振幅和相位,而在频域中,我们可以看到信号在不同频率上的振幅和相位。

时域中的信号可以用一个函数表示,该函数表示信号随着时间变化的情况。傅里叶变换将这个函数分解成不同频率的正弦波的和。每个正弦波都有一个特定的振幅和相位,这描述了这个频率的在信号中的重要程度。

频域中的信号可以用一组幅度和相位来表示,这组幅度和相位是每个正弦波的振幅和相位。这描述了信号中每个频率分量的重要性和对总信号的贡献程度。

因此,可以说时域和频域是相互补充的概念,通过傅里叶变换可以在这两个域之间进行变换。

傅里叶变化的相关公式推导

傅里叶变换是一种将一个信号从时域转换到频域的技术,它可以将一个任意时变信号分解成若干个复指数。有时也称为频域分析或频谱分析。下面将推导傅里叶变换的相关公式。

  1. 傅里叶级数

考虑一个周期为 T T T 的函数 f ( t ) f(t) f(t),可以将它展开为一个三角函数级数的形式:

f ( t ) = ∑ n = − ∞ ∞ c n e j 2 π n t T f(t)=\sum_{n=-\infty}^{\infty}c_{n}e^{\frac{j2\pi nt}{T}} f(t)=n=cneTj2πnt

其中 c n c_{n} cn 为展开系数,定义为:

c n = 1 T ∫ − T 2 T 2 f ( t ) e − j 2 π n t T d t c_{n}=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-\frac{j2\pi nt}{T}}dt cn=T12T2Tf(t)eTj2πntdt

  1. 傅里叶变换

现在考虑一个非周期函数 f ( t ) f(t) f(t),我们将其分解成广义傅里叶级数:

f ( t ) = ∫ − ∞ ∞ F ( ω ) e j ω t d ω f(t)=\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega f(t)=F(ω)etdω

其中 F ( ω ) F(\omega) F(ω) 是傅里叶变换,定义为:

F ( ω ) = 1 2 π ∫ − ∞ ∞ f ( t ) e − j ω t d t F(\omega)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt F(ω)=2π 1f(t)etdt

这个式子的解释是:将函数 f ( t ) f(t) f(t) 分解成若干个复指数,每个复指数的幅度为 ∣ F ( ω ) ∣ |F(\omega)| F(ω),相位为 arg ⁡ ( F ( ω ) ) \arg(F(\omega)) arg(F(ω)),频率为 ω \omega ω

逆变换:

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e j ω t d ω f(t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega f(t)=2π 1F(ω)etdω

这个式子的解释是:将若干个复指数按照权重函数 F ( ω ) F(\omega) F(ω) 组合在一起,得到原始函数 f ( t ) f(t) f(t)

  1. 傅里叶变换的性质

傅里叶变换具有线性性、对称性、平移性、调制性、卷积性等性质。

线性性:

F [ a f ( t ) + b g ( t ) ] = a F [ f ( t ) ] + b F [ g ( t ) ] \mathcal{F}[af(t)+bg(t)]=a\mathcal{F}[f(t)]+b\mathcal{F}[g(t)] F[af(t)+bg(t)]=aF[f(t)]+bF[g(t)]

对称性:

F [ f ( − t ) ] = F ( − ω ) \mathcal{F}[f(-t)]=F(-\omega) F[f(t)]=F(ω)

平移性:

F [ f ( t − t 0 ) ] = e − j ω t 0 F ( ω ) \mathcal{F}[f(t-t_{0})]=e^{-j\omega t_{0}}F(\omega) F[f(tt0)]=et0F(ω)

调制性:

F [ e j ω 0 t f ( t ) ] = F ( ω − ω 0 ) \mathcal{F}[e^{j\omega_{0}t}f(t)]=F(\omega-\omega_{0}) F[ejω0tf(t)]=F(ωω0)

卷积性:

F [ f ( t ) ∗ g ( t ) ] = F ( ω ) G ( ω ) \mathcal{F}[f(t)*g(t)]=F(\omega)G(\omega) F[f(t)g(t)]=F(ω)G(ω)

其中 ∗ * 表示卷积运算, F ( ω ) F(\omega) F(ω) G ( ω ) G(\omega) G(ω) 分别为 f ( t ) f(t) f(t) g ( t ) g(t) g(t) 的傅里叶变换。

  1. 傅里叶变换的解释

傅里叶变换的本质是将一个信号表示为若干个复指数的叠加。复指数具有幅度和相位两个属性,幅度表示了信号在该频率上的贡献,相位表示了该频率上的振动形式。

对于一个实数信号来说,经过傅里叶变换之后,其频域表达式是关于 ω = 0 \omega=0 ω=0 对称的。实际上,因为信号是实数,频域中正负频率的贡献是相等的,因此频谱是关于 ω = 0 \omega=0 ω=0 对称的。

  • 2
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值