激光SLAM:Livox激光雷达硬件时间同步

作者 | 月照银海似蛟龙  编辑 | 古月居

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【SLAM】技术交流群

后台回复【SLAM综述】获取视觉SLAM、激光SLAM、RGBD-SLAM等多篇综述!

前言

67e1d616b534d43f807542e49e2718be.gif

在进行机器人进行slam的时候往往单一的传感器不能实现强鲁棒性,很多时候需要用到多个传感器的融合,例如激光雷达+相机+IMU+GPS+轮速计+毫米波雷达等等。

在进行多传感器融合的时候就涉及到了数据帧的对应,如果需要用时间戳去对应的话,那么则需要进行时间同步。

由于数据的传输接收等存在不同程度的延时,数据的产生频率也不相同,如果仅用软同步的话,那么必然会存在一定偏差,导致数据对准不精确,那么就体现了硬件时间同步的重要性。

本篇主要介绍在3D激光SLAM中,如何对Livox激光雷达进行时间硬件同步。

Livox设备支持3种时间同步方式:

  • PTP:IEEE 1588v2.0 PTP 网络协议同步;

  • GPS:秒脉冲+GPRMC时间数据,组成GPS时间同步方式;

  • PPS:秒脉冲同步,需要上层应用程序通过其他途径(如:uart)获取每个脉冲的时间信息,并修正点云时间。

同步原理

2d1008c8ba9f9ea5abc1d462deb2ac49.gif

PTP时间同步原理

同步过程使用IEEE 1588v2.0 PTP的Delay request-response机制(two steps),Livox设备作为slave端,和master时钟设备进行ptp时间同步。

7ba6c74372ec1d2a2ae52ea77033477b.png

master和slave时钟通过Sync、Follow_Up、Delay_Req、Delay_Resp这几个数据包的交互,得到t1、t2、t3、t4时间,通过如下计算得到传输路径延迟和两时钟的偏移:


传输路径延时:

270baef4273addd9e12efa9b26384bf7.png

时间偏移:

05fad4e2bda76fdbd61607be776ed5a2.png

GPS时间同步原理

67a2b5c1c9ade01a2b1d380ac7240bd7.gif

GPS时钟源的PPS端口每秒发送一次硬件脉冲(PPS信号),随后数据端口发送一次对应这个脉冲上升沿的时间信息(GPRMC格式)。

Livox设备接收到PPS信号上升沿,并由GPRMC数据解析出正确的时间信息后,会设置点云时间为GPS时间,并保持此时间基准持续累加,来实现和GPS设备的时间同步。

注意:

  • Livox Hub可以直接接收RS485电平的GPRMC信号;

  • Livox LiDAR无法直接接收GPRMC信号,需要将GPRMC数据端口接入PC,然后通过sdk协议发送给雷达

PPS信号和GPRMC信号的时序要求:

dca894b7fc8389f28fa060081c750b9c.png

4995a2bf31224531eb0f7793c7be6082.png

PPS时间同步原理

Livox LiDAR每次接收到PPS信号的上升沿后,会将当前时刻的点云时间置为0,然后重新开始计时直到下一个PPS脉冲到来。

我们可以利用这个特性,来实现PPS脉冲对LiDAR时间的同步。

GPS+PPS时间同步使用方法

28c6df8ea16f2f6f8b2dccddad0b0308.gif

为了兼容其他厂商的LiDAR硬件,Livox设备也支持GPS时间同步。


由于Livox有不同种类的硬件(LiDAR/Hub),在使用GPS同步时,可以将硬件接口分为3类:

  • 使用Livox Hub;

  • 使用Livox Converter 1.0连接的LiDAR(如:Mid-40、Mid-100);

  • 使用Livox Converter 2.0连接的LiDAR(如:Tele-15、Horizon、Avia);

下面将分别介绍如何使用这3种接口进行GPS时间同步。

Livox Hub

如果GPS模块的时间信号和PPS信号是RS485电平,直接将线接入Hub的GPS时间同步口(GPS sync port)即可。

如果GPS模块的时间信号和PPS信号是TTL电平,则需要进行如下的电平转换后,才能将信号接入Hub的GPS时间同步口(GPS sync port)。

af140eb98826abadf1d286350a232afe.png

Hub使用GPS同步时,不需要进行SDK软件的配置。

Livox Converter 1.0

将GPS模块的时间信号(GPRMC)通过TTL转usb模块接入PC,PPS(必须是RS485电平)信号接入LiDAR转接盒同步口(Sync Port)。

4a10e8271a7b69db8708a6557d7ed98e.png

查看接入PC的usb模块的端口名称,


例如 /dev/ttyUSB0,


添加到 livox_lidar_config.json 文件中“timesync_config”的“device_name”,


然后将“enable_timesync”配置为 true,


波特率“baudrate_index”可以参考 Livox_ros_driver 来配置具体数值

"timesync_config": {
    "enable_timesync": true,
    "device_name": "/dev/ttyUSB0",
    "comm_device_type": 0,
    "baudrate_index": 2,
    "parity_index": 0
    }

然后 运行launch file

Livox Converter 2.0

将GPS模块的时间信号(GPRMC)通过TTL转usb模块接入PC,PPS(注意这里是TTL电平)信号接入LiDAR转接盒同步口(Sync Port)。

f765f96979b3310639bedad8cbc38ea4.png

查看接入PC的usb模块的端口名称,

例如 /dev/ttyUSB0,

添加到 livox_lidar_config.json 文件中“timesync_config”的“device_name”,

然后将“enable_timesync”配置为 true,

波特率“baudrate_index”可以参考 Livox_ros_driver 来配置具体数值

"timesync_config": {
    "enable_timesync": true,
    "device_name": "/dev/ttyUSB0",
    "comm_device_type": 0,
    "baudrate_index": 2,
    "parity_index": 0
    }

然后 运行launch file

状态检查

通过查看点云数据包头中的timestamp_type数据,


如果timestamp_type为3,则说明设备正在进行GPS时间同步:

6dfa6444cb7fd4a93c5a5150a2e091bb.png

35b93e094ab0ee1fba184f44709cfd31.png

UTC时间格式:

8f348ae753a7ed0fb472ff3f67c5024a.png

PPS时间同步使用方法

c7c2a06bc7e2b195c8714c82fb1356fb.gif

Livox LiDAR每次接收到PPS信号的上升沿后,会将当前时刻的点云时间置为0,然后重新开始计时直到下一个PPS脉冲到来。我们可以利用这个特性,来实现PPS脉冲对LiDAR时间的同步。


下面是实现这个流程的伪代码:

// PPS Time Synchronization
static uint64_t lidar_time_last;
static uint64_t lidar_time_real;


// 1. Read the PPS rising edge time, Unit is nanosecond.
uint64_t pps_time_ns = get_pps_rising_nsecond();
// 2. Read LiDAR point time, Unit is nanosecond.
uint64_t lidar_time = get_lidar_pack_time();
// 3. Update real time.
if (lidar_time < lidar_time_last)
{
    //LiDAR time jump indicates the generation of PPS rising edge.
    lidar_time_real = pps_time_ns + lidar_time%(1000000000);
}
else
{
    lidar_time_real += lidar_time - lidar_time_last;
}
//Update history
lidar_time_last = lidar_time;

通过其他方式获得PPS上升沿的时间信息,对应上述代码中的get_pps_rising_nsecond()接口。

3aef30d6cdf1dac23b5406777e7fbd77.png

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、硬件配置、AI求职交流等方向;

ce077e00226d0366cf9c8fca21885ff9.jpeg

添加汽车人助理微信邀请入群

备注:学校/公司+方向+昵称

### 使用 Livox Avia 激光雷达与内置 IMU 运行 Fast-LIO 的效果评价 Fast-LIO 是一种高效的 LiDAR-惯性里程计框架,采用了紧耦合迭代卡尔曼滤波器设计[^1]。通过前向和后向传播技术,能够有效补偿 LiDAR 扫描过程中的运动畸变,并显著提高定位精度。此外,Fast-LIO 提出了一个等效公式以简化卡尔曼增益的计算复杂度,从而提升了系统的实时性能。 对于 Livox Avia 激光雷达及其内置 IMU 来说,其硬件特性决定了它在某些场景下的表现潜力: #### 1. **硬件特点** Livox Avia 配备了高性能的 MEMS IMU 和独特的非重复扫描模式 MID-360,这使得它可以覆盖更大的视场角 (FoV),同时减少数据冗余。这种组合非常适合用于动态环境下的 SLAM 应用[^3]。 #### 2. **软件适配** 为了使 Livox Avia 能够顺利运行 Fast-LIO,需要完成 ROS 工程设置以及驱动程序安装。具体来说,可以通过 `livox_ros_driver2` 安装对应的驱动支持,并将其集成到现有的 ROS 工作空间中。随后启动必要的 launch 文件即可实现地图构建功能。 #### 3. **实际应用表现** 基于上述软硬件条件,在无人机飞行实验中验证了 Fast-LIO 方法的有效性和鲁棒性。即使面对快速旋转或剧烈加减速等情况,依然能保持较高的定位精度和时间同步能力。因此,当使用 Livox Avia 及其内部 IMU 数据源时,预期可以获得如下优势: - **高精度姿态估计**:得益于紧密融合机制,即便是在高速变化条件下也能维持稳定输出; - **低延迟反馈循环**:由于优化后的卡尔曼增益处理逻辑降低了运算负担,进一步增强了响应速度; - **适应性强的地图生成**:无论是在开阔区域还是狭窄走廊间穿梭移动,均展现出良好的适用范围; 然而需要注意的是,尽管理论分析表明这套方案具备诸多优点,但在特定情况下仍可能存在局限之处。例如,如果目标区域内存在大量反射率较低或者完全吸收光线材质构成的对象,则可能影响最终成像质量进而干扰整体性能评估结果。 ```bash roslaunch fast_lio mapping_avia.launch roslaunch livox_ros_driver2 msg_MID360.launch ``` 以上命令可用于启动完整的系统链路以便观察实际运作状况并收集相关统计数据作为后续改进依据之一部分。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值