当下激光雷达Slam和视觉Slam的瓶颈是什么?

作者 | 孙成浩  编辑 | 3D视觉之心

原文链接:https://www.zhihu.com/question/660844700/answer/89494980006

点击下方卡片,关注“3D视觉之心”公众号

第一时间获取3D视觉干货

>>点击进入→3D视觉之心技术交流群

已经(基本)解决的问题

  1. 低动态场景下的建图;

  2. 基于先验地图的厘米级定位;

  3. 室外与gps互补,提供高频平滑的轨迹;

工程上的一些不足(多数从业者可以解决的问题)

  1. 视觉slam:低纹理场景下鲁棒性不足(可以通过引入多摄像头和以superpoint为代表的学习类匹配方法改善)

  2. 激光slam:几何结构相似场景的定位/重定位(面对具体业务场景,可以通过多种trick解决,例如加反光柱)

  3. 通病:高动态场景地图的维护与稳定定位(建图时选择静态场景,定位时轮式机器人通过轮速计,腿式机器人通过pdr实现定位约束)

  4. 更低的占用,更高的频率,更高的精度与鲁棒性。这些其实不是问题哈哈哈,看具体项目吧。

真正的危机

  1. 如何长时高动态的自动地图维护:面对以年为时间单位的动态地图,如何自主的维护地图,并智能实现高召回率的重定位与鲁棒的定位。

  2. 如何建立更好的语义地图。如何使用预训练的vlm模型,建立一个高信息密度的语义地图,实现多种地图查询任务。这涉及到大模型,具身智能,导航等相关技术,未来的slam肯定不是一个独立的工作站,而是要向端到端靠拢。

  3. slam这个技术栈的重要性在减弱。面对大多数场景,其实不需要高精度的定位(想想人类的定位模式)。在具身智能时代,我们更希望机器人在简单的拓扑地图先验下,使用粗精度(米级)的定位与实时环境感知完成导航与操作任务。

【3D视觉之心】技术交流群

3D视觉之心是面向3D视觉感知方向相关的交流社区,由业内顶尖的3D视觉团队创办!聚焦维重建、Nerf、点云处理、视觉SLAM、激光SLAM、多传感器标定、多传感器融合、深度估计、摄影几何、求职交流等方向。扫码添加小助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

3bcbe09aa367acac9fcf3167903a5186.jpeg

扫码添加小助理进群

【3D视觉之心】知识星球

3D视觉之心知识星球主打3D感知全技术栈学习,星球内部形成了视觉/激光/多传感器融合SLAM、传感器标定、点云处理与重建、视觉三维重建、NeRF与Gaussian Splatting、结构光、工业视觉、高精地图等近15个全栈学习路线,每天分享干货、代码与论文,星球内嘉宾日常答疑解惑,交流工作与职场问题。

923f93d2a4cf2cec9bea75000e8654de.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值