当下具身智能研究的10个热点领域是什么?

最近很多入门的同学对选择具身智能研究方向有所疑问,过来咨询我们。今天就给大家介绍下具身领域的一些热点研究方向,希望能够帮助到大家。我们也准备了一些教程呈现给大家。


1)VLA

VLA,Vision-Language-Action模型,是具身智能领域的新范式,从给定的语言指令和视觉信号,直接生成出机器人可执行的动作。这种范式打破了以往只能在单个任务上训练大的局限性,提供了机器人模型往更加通用,场景更加泛化的方向发展。VLA模型在学术界和工业界的重要性主要体现在其将视觉信息、语言指令和行动决策有效整合,显著提升了机器人对复杂环境的理解和适应能力。

这种新范式打破了传统方法的单任务局限,使得机器人能够在多样化的场景中自主决策,灵活应对未见过的环境,广泛应用于制造业、物流和家庭服务等领域。此外,VLA模型已成为研究热点,推动了多个前沿项目的发展,如RT-2、OpenVLA、QUAR-VLA和HumanVLA,这些研究促进了学术界与工业界的合作。其适应性体现在能够应用于机械臂、四足机器人和人形机器人等多种平台,为各类智能机器人的发展提供了广泛的潜力和实际应用价值,成为智能机器人领域的关键驱动力。

eb4642310ff5f9ee9d5752c68101af36.png

目前VLA是各大机器人顶会、顶刊接受的热点方向,也是很多研究者争先入坑的方向。具身智能之心也为行业出品了一套VLA算法与实战教程,感兴趣的同学欢迎咨询关注:国内首个系统面向工业与科研的具身智能VLA课程!


2)VLN

机器⼈如何理解语⾔指令、感知周围环境,规划运动策略是具⾝智能研究中的核心命题。视觉语⾔导航(VLN)任务囊括了这三个方面,是其中的代表性方向。VLN要求机器人在陌生的3D环境中,根据自然语言指令,利用视觉信息探索环境并导航至目标位置。不同于传统导航,VLN并非单纯依赖传感器或预设路径,而是通过多模态融合完成复杂任务。从2018年R2R基准被提出以来,VLN吸收了预训练大模型,自动驾驶,3D视觉等方向的前沿技术与思想,评测效果不断提升,多种评测基准不断 涌现。DeepMind, 密歇根的SLED实验室和中山大学的人机物实验室都在这个领域有深⼊研究。如今,VLN仍在指令与视觉信息推理,环境信息表征,实际环境部署上存在许多挑战,技术上有许多可待突破的空间。

当前,目标导航领域被越来越多关注。具身智能之心也为行业出品了一套VLN算法与实战教程,感兴趣的同学欢迎咨询关注:重磅!国内首个面向工业级的视觉语言导航VLN课程来啦~


3)Diffusion Policy

具身智能,作为机器人学习与人工智能紧密交织的前沿交叉领域,正以一种颠覆性的姿态重新诠释着智能机器人与环境之间的交互模式。扩散策略扎根于扩散模型的创新性应用。其核心机制是通过精妙的逐步去噪过程,生成极为精确的机器人动作序列。在复杂任务的执行中,扩散策略的卓越性能展露无遗。例如在机器人需要在杂乱无章的仓库环境中,准确抓取并搬运特定货物的场景下,扩散策略能够依据传感器收集到的环境信息,包括货物的位置、形状以及周围障碍物的分布等,有条不紊地生成一系列动作指令,引导机器人精准地完成任务,其高效性与准确性远超传统方法。

扩散策略大模型 RDT(Robotic Diffusion Transformer)的诞生,更是为该领域带来了革命性的突破。RDT 创新性地将 Transformer 架构与扩散模型深度融合,进一步提升了扩散策略在机器人应用中的性能与泛化能力。


4)强化学习

机器人在不同环境和任务中面临各种不确定性,强化学习允许机器人通过与环境的交互不断试错学习,根据环境反馈调整行为策略,逐渐找到最优行动方案,即使没有标注数据也无妨!主要有以下优势:

复杂任务处理能力:现代机器人常需完成复杂多样任务,强化学习可将复杂任务分解为多个子任务或步骤,通过不断学习和优化每个子任务的执行策略,使机器人学会完成复杂任务。如机器人在执行搜索救援任务时,能通过强化学习掌握搜索路径规划、目标识别和救援操作等一系列技能。

优化运动控制:机器人的运动控制需要精确和高效,强化学习可用于优化机器人的运动轨迹和动作序列,使其运动更流畅、高效和稳定。如机器人在进行抓取任务时,通过强化学习能调整手臂的运动速度、角度和力度,以实现精准抓取。

与环境的交互性:机器人的工作离不开与周围环境的交互,强化学习以环境反馈为基础,使机器人能根据环境变化实时调整行为,更好地与环境进行交互和协作。如在人机协作场景中,机器人可通过强化学习感知人类的动作和意图,调整自身行为以实现安全高效的协作。


5)机械臂抓取与位姿估计

机械臂抓取相关的工作,目前学术界有传统视觉抓取(分层)和端到端方案。从传感器的使用上又分为RGB方案、RGB-D方案、pointcloud方案。位姿估计是工业机器人和人形机器人完成执行动作的前提,被越来越多工业与学术界关注。具身智能之心前面出品了一套机械臂抓取课程,涉及传统+具身相关,欢迎关注:国内首个具身智能算法与实战全栈教程


6)Sim2Real&零样本

如何解决当下标注数据缺失问题?如何通过开源数据、仿真数据训练的模型快速迁移到其它任务和场景中?这是行业研究的热点,也是商业化落地必须要解决的问题。大规模标注数据,及其昂贵。

代表作:RoboGSim、SplatSim等

7bf988026a4752b1ae101f2959e20ed1.png


7)大模型

大模型是自驾与具身领域绕不开的内容。特别是多模态大模型相关,视觉语言的深入理解是面向通用智能的毕竟之路。通用大模型+微调,是当下各个下游任务的流行范式(3D场景理解、规划等)。更小的模型部署到边缘端,也是行业研究的热点。


8)触觉感知

触觉是人类皮肤的一项关键功能,通过物理接触实现与周围环境的互动。触觉感受器通常基于触摸/压力检测,实现对外部刺激的反应,如压力、弯曲、拉伸和温度变化,从而识别接触的物体。对接触物体的抓取力度也是当下研究的热点,如“抓取薯片”、“抓取鸡蛋”等。触觉感知是面向真正具身智能不可绕开的内容。


9)其它

其它如机器人的运动学控制、闭环/开环仿真也是行业关注的热点,这里不再做过多阐述,下一期奉上给大家。

具身智能作为人工智能领域的重要分支,正在经历一场深刻的变革。欢迎加入我们打造的具身智能社区—具身智能知识星球这里已经汇聚了近1000名具身智能&机器人从业人员,每日分享前沿技术、行业动态、等一手资料!

aad5cc59223641727f4f4ce910b3f642.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值