MPC在实践中的应用及本质理解

应用场景:

MPC即可以用于控制Control也可以用于规划Planning

MPC(MPC最后也是转化为QP问题进行求解,调用QP问题求解器。本质就是求二次型的极值,故代价函数J必须是二次型的形式):

MPC的输入:

1,模型必须是线性模型,确保代价函数J是二次型,从而求极值即可获取预测时间段内的控制序列u,u是一个多维的向量,u={u(k),u(k+1),u(k+2),…,u(k+n)}。
2,约束必须是线性约束,这是拉格朗日算子要求的,用于求约束对于极值的影响。
3,初始状态
4,参考轨迹

MPC的输出:

预测的未来序列

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值