应用场景:
MPC即可以用于控制Control也可以用于规划Planning
MPC(MPC最后也是转化为QP问题进行求解,调用QP问题求解器。本质就是求二次型的极值,故代价函数J必须是二次型的形式):
MPC的输入:
1,模型必须是线性模型,确保代价函数J是二次型,从而求极值即可获取预测时间段内的控制序列u,u是一个多维的向量,u={u(k),u(k+1),u(k+2),…,u(k+n)}。
2,约束必须是线性约束,这是拉格朗日算子要求的,用于求约束对于极值的影响。
3,初始状态
4,参考轨迹
MPC的输出:
预测的未来序列
