论文解析 - Probabilistic Data Association for Semantic SLAM(一)简介

本文解析ICRA2017最佳论文《Probabilistic Data Association for Semantic SLAM》,探讨如何将尺度信息和语义信息融入SLAM框架。文章介绍了SLAM中的概率化数据关联问题,通过期望测量似然模型解决数据关联不确定性,采用EM法进行迭代优化,以期望最大化方式求解最优估计。
摘要由CSDN通过智能技术生成

前言

本文解析的论文是Probabilistic Data Association for Semantic SLAM,其为ICRA2017 Best Paper,来自美国宾夕法尼亚大学的Sean L. Bowman和George J. Pappas。

ICRA为机器人三大会议之一,完整名单为:IROS ICRA RSS。

该论文附带youtube视频:https://www.youtube.com/watch?v=JMkBTK9mahk,跑的是KITTI经典室外车辆运动数据集,演示的效果中建好的地图中的物体会基于当前估计的摄像头姿态被投影到观测中,作为一个观测的预测,然后以此辅助摄像头姿态的估计。

注意蓝色的车辆为地图中建立的物体模型投影到当前观测中的效果。


简单梳理文章结构,其实该论文核心就是提出了一种将尺度信息和语义信息融合的理论框架,而前端的选择则可以基于实际情况挑选,论文中挑选的是比较常用的物体检测框架。

识别语义物体,然后将其建立到地图中。

建立的地图以及轨迹。

系列解析将重点理解其数学模型,并补充理解该论文所需的几点内容,如概率图模型因子图、涉及的非线性优化相关知识等。根据论文章节可能会拆分成多个部分,论文第一部分的叙述就不说了大家可以自己看,本文作为第一篇文章重点介绍论文第二部分:SlAM中的数据关联概率学原理。下一文将介绍语义SLAM。
16年综述说:语义slam正处于婴儿期,或许此文会将其带入幼儿期。

 


跳过前文论述,直接进入第二部分的主题。

II. Probabilistic Data Association in SLAM

SLAM中的概率化数据关联问题

论文中对SLAM问题的数学模型做出了非常清晰的定义。在经典SLAM问题中,移动的传感器经过未知的环境,将M个静态路标建模为集合 \mathcal{L}\mathop=^\triangle\{​{\ell_m}\}_{m=1}^M ,给定传感器测量为集合 \mathcal{Z}\mathop=^\triangle\{​{\mathbb{z}_k}\}_{k=1}^K ,任务为估计路标位置 \mathcal{L} 和传感器的姿态序列\mathcal{X}\mathop=^\triangle\{​{\mathbb{x}_t}\}_{t=1}^T,姿态序列将反映传感器的轨迹。

而目前大部分已有的工作都忽略了一个问题,那就是数据关联 \mathcal{D} 。定义 

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值