大模型在股票市场预测的有效性研究

Predictive Power of LLMs in Financial Markets

股票市场预测对投资者有重要价值,帮助制定盈利或风险最小化策略,找到赚最多钱的最佳策略。对投资者来说,预测股市是涨是跌一直是个挑战。大语言模型的出现为解决这个问题提出了新的思路,本文的研究目标是比较GPT与传统模型(如BERT)在预测经济相关性上的有效性,使用美联储《褐皮书》数据进行预测,分析经济状况与资产相关性。

论文地址:https://arxiv.org/pdf/2411.16569

摘要

股票市场预测对投资者有重要价值,帮助制定盈利或风险最小化策略。然而市场数据噪声大,选择合适的数据和模型进行预测具有挑战性。随着大语言模型的兴起,提供了更有效地分析数据的方案。本文的研究目标是比较GPT与传统模型(如BERT)在预测经济相关性上的有效性,使用美联储《褐皮书》数据进行预测,分析经济状况与资产相关性。结果显示《褐皮书》确实包含资产间的相关信息,但GPT模型存在过度前瞻性偏差,传统模型表现更佳。

简介

对投资者来说,预测股市是涨是跌一直是个挑战。为了预测市场走势,研究人员尝试了几种不同的方法,从不同的统计机器学习模型到社交媒体趋势,目标是找到赚最多钱的最佳策略。

大语言模型的出现为解决这个问题提出了新的思路,本文的目标是研究是否可以通过使用大语言模型来预测人们对市场的看法。

挑战

市场数据噪声大,波动性强,受新闻和重大事件影响显著,预测市场动向困难。模型容易过拟合历史数据,难以泛化,无法预测突发事件(如疫情)。新闻数据复杂且来源多样,单一来源可能无法全面反映市场动态。由于定量和定性数据的噪声,市场预测面临巨大挑战,采用大型语言模型和更清洁的数据集是应对策略。

大语言模型的挑战

大型语言模型(LLM)输出为概率分布,实验难以复制。LLM 可能产生幻觉,返回不正确或不相关的答案。LLM 为黑箱,难以识别输入中对输出有用的部分。

相关工作

Kalyani (2016) 提出利用新闻情感分析预测股市趋势,但机器学习技术在提取非线性信息方面存在局限。Ren (2022) 采用双向LSTM模型分析新闻对股价变化的影响,但使用的word2vec嵌入模型较旧,无法有效捕捉长文章中的重要信息。Bybee (2023) 使用LLM分析新闻文章中的经济情感,尝试预测预期收益,但收益波动较大。

本研究计划改进Bybee的方法,重点预测股票和债券之间的相关性及价格变化,以构建最佳投资组合。本研究将使用每1-2个月发布的Beige Book,提供更清晰的经济数据,而非频繁且嘈杂的新闻文章数据。

方法

数据

从1985年到2023年获取GSPC历史股价,AGG债券数据从2003年中期到2023年。使用Wharton Research Data Services和FRED获取1980年以来的各类债券收益率及ICE BofA US Corporate Index总回报指数。运行线性回归,最佳结果为公司指数及1年、2年、5年、7年、10年债券收益率,出样本R²为0.9901。模型预测AGG价格误差较小,显示出较高准确性。每年5个月、12个州的《米尼阿波利斯联邦储备银行褐皮书》文章可公开获取,易于抓取。

相关性

通过计算股票和债券的每日百分比变化来定义其真实相关性。使用GPT-3.5 Turbo模型分析经济条件文章,设定温度为0以确保结果可重复。模型根据给定的年份和经济文章,预测股票和债券的相关性,返回0(负相关)、1(无相关)或2(正相关)。还可以通过0到10的范围更具体地询问相关性,并计算概率p以稳定相关性。如果文章超出上下文长度,分段处理或随机选择部分进行分析。

Bert相关性

训练BERT模型以输出与GPT模型相似的值。将实际相关性四舍五入为−1、0或1,作为分类算法。根据相关性将数据分为11个类别,作为每月Beige Book文章的标签。模型使用1980至2021年9月的数据,训练10个周期。预测值计算方式与GPT模型相同,生成3种不同版本的相关性计算结果。

全部相关性

实验中使用的相关性包括:

  • 原始的Beige相关性(3个版本)

  • 带有分箱的Beige相关性(3个版本)

  • 原始的BERT相关性(3个版本)

  • 带有分箱的BERT相关性(3个版本)

实验

本文对以下四个问题实验:

  • 是否存在GPT-3.5模型的前瞻性偏差?

  • 添加历史相关性是否能改善预测?

  • GPT-3.5模型在分析联邦数据方面是否优于BERT模型?

  • GPT模型是否比标准模型更有效地赚钱?

假设检验

使用假设检验分析预测与实际月相关性的RMSE。RMSE公式为:

每个RMSE跨越n个月以保持独立性。训练集为1980年1月至2021年9月,测试集为2021年10月至2024年6月。

模拟仿真

评估GPT模型在现实世界中的应用,通过模拟不同策略下的投资组合价值变化。使用两个主要指标:PnL(投资组合价值变化)和Sharpe比率(风险调整后收益)。Sharpe比率公式:

测试2变量最小化策略,目标是通过股票和债券的权重分配来最小化风险。权重优化公式:

使用指数移动平均保持标准差一致,分析不同相关性对权重的影响。

其中σS和σB分别表示股票和债券的标准差,ρ对应于它们的相关性。因此,我们可以通过使用指数移动平均来保持所有策略的标准差相同,然后看看不同的相关性如何影响权重。

然后我们考虑使用其他几个资产类的情况。除了股票和债券,我们还将使用大宗商品和美元价值。尽管训练集可能会由于后来存在的一些指标而减少,但它们仍然可以很好地表示Covid之前和之后的投资组合的表现。我们的计算也会有所不同,因为我们需要引入一些线性代数。

假设检验结果

有预见性的偏见

模型存在前瞻性偏差,意味着在训练过程中使用了未来信息。如果模型用5月的信息预测6月,可能会影响预测结果。

假设0为无前瞻性偏差,若测试集误差显著增加,则有前瞻性偏差的证据。进行单侧t检验,比较训练集和测试集的RMSE,随着n增加,测试集的可靠性降低。原策略的结果不显著,而分箱策略的结果显著,表明测试集误差增加。模型在回答具体问题时,可能更多依赖历史数据而非褐皮书信息。原褐皮书策略结果不显著,因模型可访问过去收益。

添加历史相关性

通过添加过去三个月的相关性来测试错误是否减少。定义无相关性和有相关性的RMSE为e_without和e_with。假设检验:

使用t检验,显著结果表示错误减少。结果显示无显著性,且添加噪声数据后猜测变差。结论是GPT模型无法完美捕捉噪声数值数据的模式。

GPT模型是否优于BERT

GPT模型在训练集上分析联邦数据的表现优于BERT模型,尤其是在原始相关性上。在测试集上,BERT模型表现更好,可能是因为GPT模型存在前瞻性偏差和过拟合,导致其泛化能力差。GPT模型适合获取过去特定信息,但对未见信息的泛化能力较弱。

模拟仿真结果

两个变量

比较三种模型:基线(指数平均协方差)、BERT(原始相关性V3)、GPT(原始相关性V3)。基线模型使用指数滚动协方差,能捕捉更多信息。选择BERT和GPT的原因是V3模型的相关性更准确且减少前瞻性偏差。结果显示BERT模型在两个时期表现最佳,GPT模型有时表现不如简单滚动协方差。使用BERT分析Beige Book可能获得最优投资组合。

多变量

BERT模型在Covid前后模拟中均优于基线和GPT模型。GPT策略在Covid前表现不佳,Covid后更差,可能存在过拟合或对Beige Book分析不足的问题。

总结

GPT模型存在前瞻性偏差,且在预测相关性方面与BERT模型的表现相似。BERT模型和滚动平均策略在某些情况下优于GPT模型,可能因BERT作为分类模型更简单。随着资产数量增加,相关性计算成本呈O(N²)增长,使用GPT计算相关性代价高。

未来可利用其他联邦数据源和清理过的新闻数据集,除了Beige Book。不同的大型语言模型(如Gemini、Llama、GPT-4o)可能产生不同结果。可在未来对GPT-4o进行重新测试,以验证其在新数据上的表现。提供了测试大型语言模型与早期变换器模型比较的基础,关注较少利用的变量预测。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值