KDD 2023 | 量化交易相关论文(附论文链接)

d8682706765a09f9e597e6c10d8f8bc2.png

写在前面

ACM SIGKDD 国际会议(简称 KDD)是由ACM的数据挖掘及知识发现专委会主办的数据挖掘研究领域的顶级年会,属于CCF A 类会议。KDD 2023是第二十九届国际数据挖掘会议,将于2023年8月6日至10日在美国加利福尼亚州长滩举行。KDD 2022 的总体接收率为 18.3%。本文介绍了KDD 2023中收录的几篇量化交易相关的论文。

6d20c994ab63c94943751de9188efd29.png

论文标题:

Mastering Stock Markets with Efficient Mixture of Diversified

Trading Experts

作者单位:

南阳理工大学

论文链接:

https://personal.ntu.edu.sg/boan/papers/KDD23_Stock.pdf

研究内容:

量化股票投资是一项基础的金融任务,它高度依赖于市场状态的准确预测和盈利投资决策的制定。尽管深度学习(DL)在捕捉随机股市交易机会方面的最新进展显示出了出色的表现,但现有DL方法的性能对网络初始化和超参数选择敏感,不稳定。现有工作的一个主要限制是,投资决策是基于具有高不确定性的单个神经网络预测模型进行的,这与实际交易公司的工作流程不一致。为了解决这个限制,作者提出了AlphaMix,这是一个新颖的具有三个阶段的专家混合(MoE)框架用于量化投资,以模拟成功交易公司高效的自下而上的分层交易策略设计工作流程。在第一阶段,作者引入了一种高效的集成学习方法,与传统的集成方法相比,其计算和内存成本显著降低,用于训练具有个性化市场理解和交易风格的多组交易专家。在第二阶段,通过建立一个交易专家池,利用神经网络的超参数级别和初始化级别的多样性,收集多样化的投资建议,用于事后集成构建。在第三阶段,设计了三种不同的机制,即as-needed adapter,with-replacement selection和集成专家池,以动态从专家池中挑选专家,承担投资组合管理者的责任。通过对美国和中国股市的广泛实验,证明了AlphaMix在7个流行的金融指标上显著优于许多最先进的基准模型。

e806beba81f6114d2561ded4872f9c49.png

模型框架

9ace91998ee25efc5f98c893761b7939.png

实验结果

论文标题:

Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning

作者单位:

中国科学院大学,华为

论文链接:

https://arxiv.org/pdf/2306.12964.pdf

代码链接:

https://github.com/RL-MLDM/alphagen/

研究内容:

在量化交易领域,将原始的历史股票数据转化为市场趋势的指示信号是常见的做法,这些信号被称为阿尔法因子。以公式形式表示的阿尔法更具解释性,因此受到关注风险的从业者的青睐。在实践中,一组公式化的阿尔法通常被一起使用以获得更好的建模精度,所以我们需要找到能够很好地协同工作的公式化阿尔法集合。然而,大多数传统的阿尔法生成器分别单独挖掘阿尔法,忽视了后来阿尔法会被组合的事实。在这篇论文中,作者提出了一个新的阿尔法挖掘框架,优先挖掘协同的阿尔法集合,也就是说,它直接使用下游组合模型的性能来优化阿尔法生成器。提出的框架还利用强化学习(RL)的强大探索能力,以更好地探索公式化阿尔法的广阔搜索空间。组合模型的性能贡献被指定为RL过程中使用的回报,驱动阿尔法生成器找到改善当前集合的更好的阿尔法。在真实世界的股市数据上的实验评估显示了提出的框架在股票趋势预测方面的有效性和效率。投资模拟结果显示,提出的框架能够实现比以前的方法更高的回报。

15daa149dbfac6f44402ad8bf887a2c7.png

模型框架

de4a2ed2b9ae4d40f72337aebbc5e4b6.png

回测收益曲线

论文标题:

Learning Multi-Agent Intention-Aware Communication for Optimal Multi-Order Execution in Finance

作者单位:

上海交通大学,微软亚洲研究院

论文链接:

https://arxiv.org/pdf/2307.03119.pdf

研究内容:

订单执行是量化金融的一项基础任务,目的是完成特定资产的一系列交易订单的购买或清算。最近在model-free 强化学习(RL)方面的进步为订单执行问题提供了一个数据驱动的解决方案。然而,现有的工作总是优化单个订单的执行,忽视了多个订单同时执行的实际情况,导致了次优和偏差。在本文中,作者首先提出了一种考虑实际限制的多订单执行的多智能体RL(MARL)方法。具体来说,将每个智能体视为一个独立的操作者来交易一个特定的订单,同时保持彼此之间的沟通和协作,以最大化整体利润。然而,现有的MARL算法通常通过仅交换他们的部分观察信息来实现智能体之间的沟通,这在复杂的金融市场中是低效的。为了提高协作,作者接着提出了一个可学习的多轮通信协议,让智能体之间沟通预期的行动并相应地进行优化。它通过一个新颖的动作价值归因方法进行优化,这个方法可以证明是与原始学习目标一致的,但更高效。两个真实市场数据的实验结果表明,提出的方法实现了明显更好的协作效果和优越的性能。

07b0d6e9b017a03941f5be0acb3efa9a.png

18fb41a6eb18d940214178bf91bdc70b.png

模型框架

论文标题:

DoubleAdapt: A Meta-learning Approach to Incremental Learning for Stock Trend Forecasting

作者单位:

上海交通大学

论文链接:

https://arxiv.org/pdf/2306.09862.pdf

代码链接:

https://github.com/SJTU-Quant/qlib

研究内容:

股票趋势预测是量化投资的一个基本任务,其中对价格趋势的精确预测是必不可少的。作为一项在线服务,股票数据会随着时间的推移不断到来。使用最新的数据增量更新预测模型是实际且高效的,这些数据可能会揭示未来股市中重复出现的一些新模式。然而,由于分布转移(又名概念漂移)的挑战,对股票趋势预测的增量学习仍然鲜有研究。随着股票市场的动态发展,未来数据的分布可能与增量数据略有或大幅不同,这阻碍了增量更新的有效性。为了应对这个挑战,作者提出了DoubleAdapt,这是一个带有两个适配器的端到端框架,可以有效地适应数据和模型,以减轻分布转移的影响。作者的关键见解是自动学习如何将股票数据适应到有利于盈利更新的局部静态分布。通过数据适应,可以在分布转移减轻的情况下自信地适应模型参数。作者将每个增量学习任务视为一个元学习任务,并自动优化适配器以实现理想的数据适应和参数初始化。在真实世界的股票数据集上的实验表明,DoubleAdapt实现了最先进的预测性能,并显示出相当的效率。

adf2b011d824b066449a49d0abdbcc2b.png

模型框架

6b601489245960573f0a16fcbc5e307e.png

回测表现

2f2941a54cd2e1b9d1695519e7efc239.png

《人工智能量化实验室》知识星球

79d87464d54971d91c5505b34d026b95.png

加入人工智能量化实验室知识星球,您可以获得:(1)定期推送最新人工智能量化应用相关的研究成果,包括高水平期刊论文以及券商优质金融工程研究报告,便于您随时随地了解最新前沿知识;(2)公众号历史文章Python项目完整源码;(3)优质Python、机器学习、量化交易相关电子书PDF;(4)优质量化交易资料、项目代码分享;(5)跟星友一起交流,结交志同道合朋友。(6)向博主发起提问,答疑解惑。

f7bfbfb4b56e7dd1aa13594b7a0c5657.png

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值