YOLOv8 Ultralytics:使用Ultralytics框架进行定向边界框对象检测

在这里插入图片描述
在这里插入图片描述

前言

相关介绍

  • YOLOv8是YOLO系列实时目标检测器的最新版本,在准确性和速度方面提供了尖端的性能。基于以前的YOLO版本的进步,YOLOv8引入了新的功能和优化,使其成为各种应用中各种目标检测任务的理想选择。
  • YOLOv8官方文档:https://docs.ultralytics.com/
  • 定向对象检测比对象检测更进一步,引入了额外的角度来更准确地定位图像中的对象。
  • 定向对象检测器的输出是一组旋转的边界框,精确包围图像中的对象,以及每个框的类标签和置信度分数。当您需要识别场景中感兴趣的对象,但不需要知道对象的确切位置或其确切形状时,对象检测是一个不错的选择。

前提条件

实验环境

matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.6.0
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0
tensorboard>=2.4.1
pandas>=1.1.4
seaborn>=0.11.0

安装环境

pip install ultralytics
# 或者
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快

在这里插入图片描述

在这里插入图片描述

项目地址

Linux

git clone https://github.com/ultralytics/ultralytics.git
Cloning into 'ultralytics'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.

Windows

请到https://github.com/ultralytics/ultralytics.git网站下载源代码zip压缩包。

使用Ultralytics框架进行定向边界框对象检测

在这里插入图片描述

yolo obb predict model=yolov8n-obb.pt source=images/plane.png

在这里插入图片描述

在这里插入图片描述

参考文献

[1] YOLOv8 源代码地址:https://github.com/ultralytics/ultralytics.git.
[2] YOLOv8 Docs:https://docs.ultralytics.com/
[3] https://docs.ultralytics.com/tasks/obb/

### YOLOv8 使用文档及相关示例 #### 1. YOLOv8 新特性概述 YOLOv8 是由 Ultralytics 开发的一个高性能目标检测框架,其最新版本 v8.1 增加了定向目标检测功能(Oriented Object Detection),支持旋转边界框(OBB)的处理[^1]。这一功能特别适用于航空图像中的物体识别场景。 以下是主要的新特性和改进: - **OBB 支持**:引入了面向对象的目标检测能力,能够有效处理具有方向性的目标。 - **性能优化**:通过算法调整和硬件加速提升了整体运行效率。 - **社区贡献**:增加了更多预训练权重以及对多种数据格式的支持。 #### 2. 安装与配置环境 为了使用 YOLOv8,需先安装 Python 和 PyTorch 环境,并克隆官方仓库: ```bash pip install ultralytics ``` 如果需要从源码构建,则可以执行以下命令来获取最新的代码库: ```bash git clone https://github.com/ultralytics/ultralytics.git cd ultralytics pip install -r requirements.txt ``` #### 3. 数据准备 对于标准矩形框的任务,可以直接采用 COCO 或其他常见格式的数据集;而对于 OBB 类型的任务,则可能需要用到特定工具完成标注文件转换工作。例如,在 DOTA 数据集中应用 `convert_dota_to_yolo_obb` 函数即可轻松实现此操作[^3]: ```python from ultralytics.data.converter import convert_dota_to_yolo_obb convert_dota_to_yolo_obb('./datasets/DOTAv1') ``` 上述脚本会自动将原始 DOTAv1 数据转化为适合输入到网络的形式。 #### 4. 模型训练 启动一次典型的检测任务训练过程非常简单,只需指定好路径参数即可开始学习流程[^2]: ```bash yolo detect train \ data=D:\ultralytics\ultralytics\cfg\datasets\myyolo-seg.yaml \ model=D:\ultralytics\ultralytics\weights\yolov8s-seg.pt \ epochs=100 \ imgsz=640 \ batch=16 \ workers=4 ``` 以上命令展示了如何基于自定义 YAML 文件加载初始权重并设置超参来进行迭代计算直至收敛为止。 #### 5. 测试与评估 当模型经过充分训练之后,可以通过如下方式对其进行验证: ```bash python test.py --weights runs/train/exp/weights/best.pt \ --data ./data/my_custom_dataset.yaml \ --img 640 \ --conf 0.4 \ --batch 1 \ --save-json \ --save-txt \ --save-conf \ --project runs/test \ --name my_test_run ``` 该部分允许我们保存预测结果至 JSON/TXT 文件当中以便后续分析比较之用[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FriendshipT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值