什么是滤波?举个最直观的简单例子:臭水沟里舀一大勺水,需要过滤成干净水怎么办?,,,用滤网(网孔可根据需要选择大小孔)过滤。
在电路方面波形的高低通滤波原理类似; 图像上的噪声点各种中值滤波等类似的滤波方案; Filter。
在状态测量领域是根据 预测+更新 的方式估计状态用途的。 Estimation。
多种传感器数据融合。data association。correlation。
一、《概率机器人》书上的贝叶斯公式及滤波公式及推导
二、卡尔曼滤波:究竟滤了谁?参考知乎网友链接:https://zhuanlan.zhihu.com/p/85865058 (激光slam,滤波方案为背景)
卡尔曼滤波和贝叶斯滤波的对比如下图
下面就用图来解释一下卡尔曼滤波,能有个更直观的感受。
首先通过上一时刻的状态预测得到当前时刻的状态分布(图a),然后通过传感器得到测量数据(图b加粗)。
结合测量数据调整更新,得到当前时刻最终的状态分布(图c加粗)。然后通过控制数据,接着预测下一时刻的状态分布(图d加粗)。
获取下一时刻的测量数据之后(图e加粗),综合得到下一时刻估计的状态分布(图f加粗)。
到这,你知道卡尔曼滤波究竟滤了谁吗?在我看来,卡尔曼滤波可以看作是,通过测量数据将仅由控制数据进行状态估计而带来不断提高的噪声(不确定性)滤除掉。同时,它更像是一种数据(传感器)融合的方法。
还记得文章前面让你蒙着眼在屋子里走吗?学了卡尔曼滤波之后应该知道怎么做能让你更准确地知道当前位置了吧?很简单,那就是睁开眼走路!
眼睛看到室内环境就相当于测量数据,综合眼睛看到的对象就会让你对自己所在的位置判断更准确啦。当然,如果你的鼻子够灵,可以通过气味判断,或者有顺风耳可以听到浴室滴水从而避免掉坑也是可以的!
三、知乎提问及答主回答;https://zhuanlan.zhihu.com/p/85865058