机器人学习--室内定位方法综述

参考:移动机器人室内定位技术综述:笔记-1 - 知乎搜素关键词: "indoor location", "indoor localization", "indoor tracking" and "indoor positioning" 对于移动机器人,定位技术是保证移动机器人轨迹/运动作业的前提技术,特…https://zhuanlan.zhihu.com/p/107880431

搜素关键词:"indoor location", "indoor localization", "indoor tracking" and "indoor positioning"

对于移动机器人,定位技术是保证移动机器人轨迹/运动作业的前提技术,特别是跟踪作业的基础。与自动驾驶车辆定位不同,小型移动机器人所需要的定位精度。根据作业环境,小型移动机器人定位技术可以视为室内定位系统(Indoor Location System, ILS)。小型移动机器人定位技术不同于机械加工领域的定位技术,从关键词上可以明显区别,“Location/Localization”与“Position/Positioning”。Localization 指的是机器人在作业空间内的自身的位置关系问题,position 是会指向更精密的点问题。

本文的主要内容包括:室内定位测量原理(物理属性),室内定位技术,定位模型方法,定位算法,定位系统评价因子,基于惯导的定位系统,基于无线电网络的定位技术,集群定位算法。

1. 室内定位测量原理(物理属性)[1]

(1)无线电频谱与电磁波

  • 个人或区域互联网,包括IEEE 802.11, Ultra-Wideband (UWB), ZigBee, 或者 Bluetooth
    • 采指纹基定位方法
      • 邻近技术
      • 贝叶斯统计匹配
      • 极大似然估计
      • 关联判决(Correlation discriminant kernel selection)
      • 神经网络
    • 非采指纹基定位方法
      • 几何学
  • 区域广播网络,包括定位目的的网络,例如GPS/GNSS,以及具有定位功能多的网络,例如智能手机网络、电视广播信号
    • 电视信号
    • 胞元网络(智能手机)
  • RFID 标签
  • 雷达

(2)光子能场

  • 图像分析,自然特征提取与识别(场景图片
    • 移动相机系统
    • 固定相机系统
  • 图像分析与特征点标记(二维码定位

(3) 声波

(4) 机械能(惯性/接触)

(5)地球磁场

(6) 大气压

无线电室内定位系统分类[2]

2. 室内定位技术

室内定位服务系统Indoor Location Based Services (ILBS)可以简单地分为三类[3]:

  • 网络系统:基于无线网络
  • 惯性系统:机载惯导系统预估定位
  • 混合系统:融合无线网络与惯性系统的混合系统
    • RSS-IMU 混合系统
    • 基于地图的混合系统
    • 基于智能手机的混合系统

3. 室内定位模型方法分类[4]:

  1. angle of arrival(AoA) 技术:根据到达信号角度
  2. time of arrival(ToA) 技术:根据到达信号时间(类似雷达测距)
  3. fingerprinting 技术,即特征技术

4. 室内定位算法模型[1]

  1. 三角定位(Triangulation),需要借助固定基站或者已知基站位置信息,GPS等无线网络定位法
  2. 邻近(Proximity), 使用具有有限的感知范围和分析能力的传感器,RFID
  3. 场景分析(Scene analysis),利用场景画面中的特征完成定位分析,点云和3D重构技术,机器视觉
  4. 航位推算(Dead reckoning),基于先验信息推算出运动轨迹,惯导、捷联惯导

4.1 定位算法

按照文献[5],基于静态传感器节点的定位技术广泛应用于移动机器人跟踪功能,定位算法可总结为:

4.1.1范围基定位(Range-based localization)

  1. time-of-arrival (TOA) – based 定位. 联合最小二乘估计 the Least-Square Estimate
  2. time-difference-of-arrival (TDOA) – based 定位. 协同定位
  3. Angle-of-arrival (AOA) – based 定位.
  4. received signal strength (RSS) – based 定位,联合最大似然估计Maximum likelihood estimate
  5. MDS Based 定位,联合奇异值分解 Singular Value Decomposition (SVD)
  6. Channel Impulse Response Based fingerprinting 定位

4.1.2无范围基定位(Range-free localization)

  1. Approximate Point in Triangle Test (APIT)
  2. Centroid-based 定位
  3. Monte-Carlo 定位
  4. DV-Hop based 定位
  5. Closer point based 定位
  6. Assumption Based Coordinates (ABC) localization method

4.2. 定位计算补偿方法Implementation methods

  1. 机器学习方法 Machine Learning Based Methods:
    least square support vector machine and Gaussian processes ,Semi-supervised Laplacian regularized least squares method and HMM based RSS-EKF (Extended Kalman Filter) method using RSS
  2. 集中和分布式方法Centralized and Distributed Methods
  3. 多传感器数据融合方法Multi-Sensor Data Fusion Methods
  4. 采指纹方法Fingerprinting Based Methods

4.3跟踪算法分类Broad classification of tracking methods:

  1. 聚类跟踪算法 Cluster-based tracking methods, dynamic clustering algorithm for target tracking
  2. 预测跟踪算法 Prediction-based tracking methods
  3. 树基跟踪算法 Tree-based tracking methods
  4. 主动跟踪算法 Activation-based tracking method
  5. Mobicast基跟踪算法 Mobicast-based tracking method

5. 室内定位方法评价[4]:

  1. 精度与误差
  2. 环境适应性。场景对定位系统测量精度影响,一个高性能框架能够避免重复定位差异。
  3. 消耗:带宽、寿命、能耗、权重与额外设备
  4. 基站数量

6. 基于惯导的定位系统

惯性导航与定位技术可以分为两类:

  • 捷联惯导系统Strapdown systems: 采用两次积分预测运动
  • 步进与航向系统Step and Heading Systems (SHS): 通过表示步进长度与航向的惯性定位向量预测位置

参考下图,惯导定位系统通过二次积分获得定位信息[6],:

一个经典的具有定位功能的移动机器人控制系统架构如下图所示,该系统通过无线电、里程计以及惯性测量单元实现自定位功能[7]。

微型惯性测量单元,包括陀螺仪、加速度计、磁偏角计、温度和气压等功能,通过物理模型和误差模型推算。

扩展卡尔曼滤波算法EKF与粒子滤波器是移动机器人群体定位中最为广泛,尤其在RoboCup等机器人大赛[7]。

7. 基于无线电定位技术

最流行的室内无线电点位技术方法为RSSI定位算法,是采用AP终端设备组件的网络,通过检测信号功率推算距离,再利用定位模型获取定位信息,最常见的终端是ZigBee。

参考[8]

基于ZigBee组件的微型定位系统

8. 集群定位系统

参考文献[9][10],集群类机器人定位技术,不仅可以依靠静态基站进行定位,还可以利用机器人之间无线电终端辅助其它终端进行定位。

算法1 [9]

因为集群定位存在很大的噪声干扰,因此需要对采集到的信息进行去噪处理,或者提高系统抗干扰能力,采用统计算法提高定位系统精度。如在文献[10],采用了卡尔曼滤波器对定位优化。

文献[10]-算法1

文献[10]-算法2

文献[10]-算法3

9. 总结

本文大部分内容是根据综述文章对现用的室内定位进行总结,考虑到微型运动机器人的工程成本以及计算力,本文所讨论的室内定位技术并不是应用于自动驾驶的SLAM和VSLAM技术。

同时,本文提到了定位跟踪技术,在寻迹控制中个人倾向采用视觉方向。对于粗精度的定位系统,可以采用基于ZigBee的RSSI定位系统,此外可以融合IMU单元提高系统定位精度。

后续,会提供关于IMU的曲面定位算法。

参考文献

[1] Torres-Solis, J., H., T., and Chau, T., 2010, “A Review of Indoor Localization Technologies: Towards Navigational Assistance for Topographical Disorientation,” Ambient Intelligence, F.J. Villanueva Molina, ed., InTech.

[2] Kivimäki, T., Vuorela, T., Peltola, P., and Vanhala, J., 2014, “A Review on Device-Free Passive Indoor Positioning Methods,” International Journal of Smart Home, 8(1), pp. 71–94.

[3] Alejandro Correa, Marc Barcelo, Antoni Morell, and Jose Vicario, 2017, “A Review of Pedestrian Indoor Positioning Systems for Mass Market Applications,” Sensors, 17(8), p. 1927.

[4] Mrindoko, N. R., and Minga, D. L. M., 2016, “A Comparison Review of Indoor Positioning Techniques,” 21(1), p. 9.

[5] Kumar, S., and Hegde, R. M., “A Review of Localization and Tracking Algorithms in Wireless Sensor Networks,” p. 12.

[6] Lv, W., Kang, Y., and Qin, J., 2019, “Indoor Localization for Skid-Steering Mobile Robot by Fusing Encoder, Gyroscope, and Magnetometer,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(6), pp. 1241–1253.

[7] Li, D., Chen, Q., and Zeng, Z., 2018, “Self-Localization Algorithm of Mobile Robot Based on Unscented Particle Filter,” 2018 37th Chinese Control Conference (CCC), IEEE, Wuhan, pp. 5459–5464.

[8] Hernández, N., Alonso, J. M., and Ocaña, M., 2017, “Fuzzy Classifier Ensembles for Hierarchical WiFi-Based Semantic Indoor Localization,” Expert Systems with Applications, 90, pp. 394–404.

[9] Safavi, S., and Khan, U. A., 2017, “An Opportunistic Linear–Convex Algorithm for Localization in Mobile Robot Networks,” IEEE Transactions on Robotics, 33(4), pp. 875–888.

[10] Sun, Q., Tian, Y., and Diao, M., 2018, “Cooperative Localization Algorithm Based on Hybrid Topology Architecture for Multiple Mobile Robot System,” IEEE Internet of Things Journal, 5(6), pp. 4753–4763.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值