今天分享的AI Agent系列深度研究报告:《AI Agent行业报告:框架拆解、应用方向、应用领域及相关公司深度梳理》。
(报告出品方:慧博智能投研)
报告共计:34页
一、Al Agent 概述
1、Al Agent 概念
AIAgent人工代是一种够感知不同传统的人工智能,AIAgent 具备通过独立思考、调用工具去逐步完成给定目标的能力。比如,告诉 AIAgent 帮忙下单一份外卖,它就可以直接调用 APP 选择外卖,再调用支付程序下单支付,无需人类去指定每一步的操作。
2、Al Agent 对比其它人类与 AI 协同模式的区别
AI Agent 较目前广泛使用的 Copilot 式更加独立。对比AI 与人类的交模式,目前已从过去的入式工具型 AI(例如 Siri)向助理型 AI发展,目前的各类 AI Copilot 不再是机械地完成人类指令,而是可以参与人类工作流,为诸如编写代码、策划活动、优化流程等事项提供建议,与人类协同完成。而AIAgent 的工作仅需给定一个目标,它就能够针对目标独立思考并做出行动,它会根据给定任务详细折解出每一步的计划步骤,依靠来自外界的反馈和自主思考,自己给自己创建 prompt,来实现目标。如果说 Copilot 是“副驾驶”,那么 Agent 则可以算得上一个初级的“主驾驶”。
3、Agent 的最终发展目标为“通用人工智能 AGI”
AI Agent 并不是一个新兴的念,早在多前就已在人工能领域有了研究。例如 2014 年由DeepMind 推出的引发全球热议的围棋机器人 AlphaGo,也可以看做是 AI Agent 的一种。与之类似的还有 2017年 OpenAI推出的用于玩《Dota2》的 OpenAI Five,20g 年 DeepMind 公布用于玩《星际争霸2》的 AIphaStar 等,这些 AI 都能根据对实时接收到的信息的分析来安排和规划下一步的操作,均满足AIAgent 的基本定义。当时的业界潮流是通过强化学习的方法来对 AI Agent进行训练,主要应用场景是在游戏这类具有对抗性、有明显输赢双方的场景中。但如果想要在真实世界中实现通用性,基于当时的技术水平还难以实现。
大语言模型的浪潮推动了 AIAget 关研究快发展,经过四大发展阶,逐具了高效推理、灵活行动、强大泛化以及无任务转能力。
发展历程:AI Agent经历了符号智能体、反映型智能体、基于强化学习的智能体、具有迁移学习和元学习功能的智能体四大发展阶段,现在已经跨入基于大型语言模型的智能体阶段。
具备的优势:大语言模型为 AI Agent 带来了突破性的进展,同时具备了以上四大发展阶段的优势:
1)通过思维链(COT)和问题分解等技术,基于 LLM 的智能体可以表现出与符号智能体相当的推理和规划能力;
2)通过从反馈中学习和执行新的行动,获得与环境互动的能力,类似于反应型智能体;
3)大型语言模型在大规模语料库中进行预训练,并显示出泛化与迁移学习的能力;
4)从而实现任务间的无缝转移,而无需更新参数。
通往 AGI 的道路仍需探索,AI Agent 是当前的主要路线。在大模型浪潮席卷全球之时,很多人认为大 模型距离真正的通用人工智能 AGI 已经非常接近,很多厂商都投入了基础大模型的研究。但经过了一段 时间后,大家对大模型真实的能力边界有了清晰的认知,发现大模型仍存在大量的问题如幻觉、上下文 容量限制等&#x