推荐收藏!九大最热门的开源大模型 Agent 框架来了_agent框架

在人工智能领域,AI Agent 扮演着关键角色,能够模拟人类的智能行为。

近年来,开源社区涌现出多个优秀的 AI Agent 框架,本文将介绍九种备受关注的开源AI Agent框架,包括AutoGPT、AutoGen、Langfuse、ChatDev、BabyAGI、CAMEL、SuperAGI、MetaGPT和ShortGPT。这些框架为开发者提供了丰富的资源和工具,为智能应用的开发和创新提供了强大支持。

建议在落地实践中使用stars多和大厂的,喜欢记得收藏、关注、点赞。技术交流,见下文。

文章目录
    • 技术交流
    • 用通俗易懂的方式讲解系列
    • 01 AutoGPT
    • 02 AutoGen
    • 03 Langfuse
    • 04 ChatDev
    • 05 BabyAGI
    • 06 CAMEL
    • 07 SuperAGI
    • 08 MetaGPT
    • 09 ShortGPT

技术交流

技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。

建立了大模型面试&技术交流群, 大模型学习资料、数据代码、技术交流提升, 均可加知识星球交流群获取,群友已超过2000人,添加时切记的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2060,备注:技术交流

用通俗易懂的方式讲解系列

01 AutoGPT

AutoGPT是让每个人都能够访问和利用AI力量的愿景 ,以及在此基础上构建。我们的 使命是提供工具 ,让您可以专注于重要的事情:

构建- 为令人惊奇的事物奠定基础。

测试- 将您的代理调优至完美。

委托- 让AI为您工作 ,使您的想法变为现实。

https://github.com/Significant-Gravitas/AutoGPT 157K

在这里插入图片描述

02 AutoGen

AutoGen是一个框架 ,可通过多个代理进行对话以解决任务 ,实现LLM应用程序的开 发。AutoGen代理是可定制的、可对话的 ,并且能够无缝地允许人类参与。 它们可以 在使用LLMs、人类输入和工具的各种模式下运行。

该框架专注于自动生成AI Agent,能够自动完成任务并进行交互。其特点是支持多种任务类型和灵活的自定义功能。

https://github.com/microsoft/autogen 21.3K

在这里插入图片描述

03 Langfuse

Langfuse是一个面向LLM(大型语言模型)应用程序的开源可观测性和分析解决方 案。 它主要针对生产使用 ,但也有一些用户将其用于LLM应用程序的本地开发。

Langfuse专注于基于LLMs构建的应用程序。最近出现了许多新的抽象和通用最佳实 践 ,例如代理、链接提示、基于嵌入的检索、LLM对REPL和API的访问。这些使应用 程序更强大 ,但对于开发者来说也更难以预测 ,因为他们无法完全预测变更如何影响 其应用程序的质量、成本和整体延迟。 因此 ,Langfuse帮助监控和调试这些应用程序。

这是一个语言融合框架,能够将多个AI Agent的语言能力进行整合,使其同时具备多语言理解和生成的能力。

https://github.com/langfuse/langfuse 2K
在这里插入图片描述

04 ChatDev

ChatDev是一家虚拟软件公司 ,通过各种智能代理担任不同的角色 ,包括首席执行官、首席产品官、首席技术官、程序员、 审查员、测试员、艺术设计师等。这些代理构成了一个多代理组织结构 ,他们的共同使命是“通过编程改变数字世界”。ChatDev内 的代理通过参与专业功能研讨会进行合作 ,包括设计、编码、测试和文档编制等任务。

ChatDev的主要目标是提供一个易于使用、高度可定制和可扩展的框架 ,该框架基于 大型语言模型( LLMs) ,并为研究集体智能提供了理想的场景。

这个框架专注于开发聊天型AI Agent,能够进行对话和问答。它提供了一系列预训练模型和交互接口,便于用户开发定制化的聊天Agent。

https://github.com/OpenBMB/ChatDev 19.6K

05 BabyAGI

BabyAGI脚本是一个 AI 支持的任务管理系统示例. 该系统使用 OpenAI 和 PineconeAPI 创建, 优先级排序和执行任务. 该系统背后的主要思想是基于先前任务的结果和预 定义的目标创建任务. 脚本然后使用 OpenAI 的自然语言处理( NLP) 能力根据目标创 建新任务, 并使用 Pinecone 存储和检索任务结果以获得上下文。

BabyAGI致力于构建具备初步通用智能的AI Agent。它采用增强学习和知识迁移来提高Agent的智能水平。

https://github.com/yoheinakajima/babyagi 18.5K

在这里插入图片描述

06 CAMEL

CAMEL是一个专为自主和沟通代理研究设计的开源库。我们相信在大规模上研究 这些代理将为了解它们的行为、能力和潜在风险提供宝贵的见解。为了促进这一领域 的研究 ,实现并支持各种类型的代理、任务、提示、模型和模拟环境。

这个框架提供了一套完整的工具和算法,用于构建多模态AI Agent,使其能够处理文本、图像和语音等多种数据形式。

https://github.com/camel-ai/camel 4.1K

在这里插入图片描述

07 SuperAGI

‍‍

SuperAGI是一个以开发者为先的开源自主AI代理框架 ,使开发者能够构建、管理和运 行有用的自主代理。您可以轻松地同时运行多个代理 ,并通过工具扩展代理的功能。这些代理能够高效地执行各种任务 ,并在每次运行时不断提高性能。

SuperAGI是一个强化学习驱动的AI Agent框架,可用于构建具备超级人类智能的Agent。它通过增量训练和自我认知来提高Agent的性能。

https://github.com/TransformerOptimus/SuperAGI 13.7K

在这里插入图片描述

08 MetaGPT

MetaGPT是开源Agent 框架 ,将不同的角色分配给GPTs ,形成一个协同的软件实体来 执行复杂任务。

MetaGPT以一行需求作为输入 ,并输出用户故事/竞争分析/需求/数据结构/ API/文档 等。在内部 ,MetaGPT包括产品经理、架构师、项目经理和工程师。 它提供了整个软 件公司的流程 ,同时精心协调了标准操作程序。

MetaGPT是一个元学习框架,能够自动学习和适应不同任务的需求,快速实现对新任务的适应能力。

https://github.com/geekan/MetaGPT 33.9K

在这里插入图片描述

09 ShortGPT

ShortGPT是一个强大的框架 ,用于自动化内容创作。 它简化了视频制作、素材采集、 语音合成和编辑任务。

自动化编辑框架:通过以LLM为导向的视频编辑语言简化视频制作过程。

脚本和提示:为各种LLM自动化编辑过程提供即用脚本和提示。

配音/内容创作:支持包括英语与、西班牙语呂、 阿拉伯语ü、法语門、波兰语 画、德语闡、意大利语門、葡萄牙语²、俄语画、普通话圖、 日语画、 印地语 d、韩语两等多种语言(使用EdgeTTS支持30多种语言以上)。

字幕生成: 自动生成视频字幕。

素材采集:从互联网上获取图像和视频素材 ,根据需要连接网络和PexelsAPI。

存储和持久性:通过TinyDB确保自动编辑变量的长期持久性。

这个框架专注于处理短文本的AI Agent开发,具备高效的文本生成和理解能力。适用于需要实时响应和快速推断的应用场景。

https://github.com/RayVentura/ShortGPT 4.6K

在这里插入图片描述

开源AI Agent框架为开发者提供了丰富的资源和工具,加速了智能应用的开发和创新。无论是从事聊天型AI Agent开发、多模态应用构建还是实现高性能智能Agent,上述九种开源框架都将成为您的得力助手。通过借助这些框架,我们能够更快地构建出智能化的应用,推动人工智能技术的发展和应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。点击下方蓝色字 即可免费领取↓↓↓

**读者福利 |** 👉2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享 **(安全链接,放心点击)**)** **(安全链接,放心点击)**

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费或点击下方蓝色字 即可免费领取↓↓↓

**读者福利 |** 👉2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享 **(安全链接,放心点击)**)** **(安全链接,放心点击)**

在这里插入图片描述

### 大模型智能体Agent开源框架 #### PhidataRig【推荐】 PhidataRig 是一个专注于简化机器学习工作流的工具集,特别适合用于构建基于大模型的智能体应用。该框架提供了丰富的功能来处理数据准备、模型训练以及部署等环节[^1]。 ```python from phidata import WorkspaceConfig, DockerResource config = WorkspaceConfig( resources=[ DockerResource(name="my-agent", image="path/to/image"), ] ) if __name__ == "__main__": config.run() ``` 此框架的优势在于其高度集成化的特性,能够有效降低开发者的工作量并提高开发效率。对于希望快速搭建起具备复杂逻辑的大规模AI系统的团队来说是一个不错的选择。 #### LangChain LangChain 提供了一种新颖的方式来链接不同的自然语言处理组件和服务,形成更加灵活多变的应用程序结构。它支持多种主流的语言模型作为后端服务提供商,并允许通过简单的API调用来实现复杂的对话管理任务。 ```json { "chaining": [ {"service": "intent-recognition"}, {"service": "entity-extraction"}, {"service": "response-generation"} ], "model_backend": ["openai-gpt3", "huggingface-transformers"] } ``` 这种设计使得开发者可以轻松组合不同类型的NLP模块,从而创建出满足特定需求的定制化解决方案。特别是在面对需要频繁迭代优化的产品时表现出色。 #### Microsoft Autogen.ai Microsoft 的 Autogen.ai 平台旨在帮助企业级客户更高效地利用自动化技术解决实际业务挑战。平台内置了大量的预训练模型库,涵盖了图像识别、语音合成等多个领域;同时还提供了一系列高级特性和工具链帮助用户更好地管理和维护这些资源。 ```bash pip install autogen-ai autogen init my_project/ cd my_project && autogen train --data ./training_data.csv ``` 借助于强大的社区支持和技术文档体系,即使是初学者也能迅速上手操作,在短时间内完成高质量项目的交付。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值