灵星之光-1:调制解调、卷积神经网络异曲同工

本文探讨了无线通信中QAM调制的解调过程,将其比喻为分类任务,并与卷积神经网络(CNN)的卷积过程相联系。在通信解调中,特征是预设的,而在CNN中,卷积核用于识别图像特征。卷积本质上是相关性运算,通过匹配特征矩阵来检测图像中的特定模式。这两种技术在特征识别和信息解码上有相似之处,可能互相提供灵感。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无线通信中的解调:

以QAM调制为例,

QAM编码的个数,类似图像分类中的类别的个数。

调制的过程,类似“深度学习的过程”;不同的是,通信中的模型,不需要训练,特征是直接预先编码好了。

解调的过程,就是“分类的过程”,根据收到的各种变形的电磁波的波形,识别出是那种特征波形,并把特征波形映射成特定的分类信息。

卷积神经网络中的卷积核:

就是用代表某种特征的特征矩阵,去匹配图像的像素,来解调图像中是否有符合某种特征的像素组合。

卷积:本质上是相关性运算,与特性矩阵相同的数据,卷积和最大,与特征向异的数据,卷积和小。完全无关的数据,卷积和为0。即正交!

sobel operator

这两种技术场景,是否可以相互借鉴???

卷积神经网络之卷积计算、作用与思想 - shine-lee - 博客园

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文火冰糖的硅基工坊

你的鼓励是我前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值