[从零开始学DeepFaceLab-19]: 使用-命令行八大操作步骤 - 如何生成自己的目标图片或视频

本文详细介绍了从零开始使用DeepFaceLab进行深度学习面部替换的八个步骤,包括命令行环境准备、视频图片提取、模型训练、预测与合成等关键环节,适用于计算机视觉和人工智能爱好者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

第1步骤:命令行环境准备

1.1 准备

1.2 命令

第2步骤:从源视频中提取图片

2.1 准备:无

2.2 命令:

第3步骤:从目标视频中提取图片

3.1 准备:无

3.2 命令:

第4步骤:从目标图片中提取所需图片

4.1 准备:无

4.2 命令:

第5步骤:从源图片中提取所需图片

5.1 准备:无

5.2 命令:

第6步骤:模型的选择与训练(关键)

6.1 准备:拷贝模型

6.2 命令:

6.3 调参

6.4 训练

第7步骤:模型预测与生成合成图片(关键)

7.1 准备:无

7.2 命令:

7.3 调参和修整

第8步骤:把图片合成视频

8.1 准备:无

8.2 命令:


第1步骤:命令行环境准备

1.1 准备

(1)备份现有的workspace目录中的内容,防止清除之前辛苦训练的模型

  • 特别是训练好的模型
  • 原始的视频文件

(2)创建新的“workspace”目录

(3)把自己的视频文件拷贝到“workspace”目录中,并更名为:

  • data_dst.mp4
  • data_src.mp4

(4)注意事项

  • 视频中最好只有一个目标,不支持者多目标,关于多目标的情形,后续再讨论。

1.2 命令

1) clear workspace.bat
智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文火冰糖的硅基工坊

你的鼓励是我前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值