点云滤波器与过滤器

点云滤波是处理点云数据的重要步骤,用于消除设备精度、环境等因素引起的噪声。文章介绍了体素滤波、统计过滤器、半径过滤器和直通过滤器等方法,强调了每种方法的特点和应用场景。体素滤波通过创建3D体素栅格减少点的数量并保持形状特征;统计过滤器利用统计分析移除离群点;半径过滤器基于点的邻域密度保留点;直通过滤器则针对特定分布的点云进行过滤。这些技术在点云配准、特征提取等领域发挥关键作用。
摘要由CSDN通过智能技术生成

这一节将为大家介绍点云滤波,读者可能会有疑问,为什么要分为深度图滤波和点云滤波?深度图滤波是对深度图进行处理,通常处理的是深度图中相邻的像素,而点云滤波针对的是将深度图投射到3D空间后得到的点云,通常处理的是在3D空间中根据欧式距离得到的邻近区域,而且能更有效地利用其3D几何特征。举个简单的例子,一个深度图中像素被噪声干扰变成离群点,其在深度图中难以区分,而投射到3D空间以后,离群点距离其他点都很远,则很容易将其滤除。

 在获取点云数据时,由于设备精度、操作者经验、环境因素的影响,以及电磁波的行射特性、被测物体表面性质变化和数据拼接配准操作的影响,点云数据将不可避免地受到噪声干扰。在点云处理流程中,滤波处理作为预处理的第一步,对后续的影响比较大,只有在滤波预处理中将噪声、离群点、孔洞等按照后续需求进行处理,才能够更好地进行配准、特征提取、曲面重建、可视化等。PCL 库中的点云滤波模块提供了很多灵活实用的滤波处理算法,我们根据对数据处理形式的不同将其分为滤波器和过滤器两类,许多参考资料不会区分二者的概念,为避免混淆,将其明确分类。过滤器指通过设置某种条件,删除不符合条件的数据,保留符合条件的数据,如统计过滤器、半径过滤器、直通过滤器;而滤波器则是对数据进行处理修正,如体素滤波器。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值