机器人动力学参数辨识方法开源程序数据分享

文章详述了机器人参数辨识的各种方法,包括逆动力学模型与最小二乘法变体的结合,以及辅助变量法和最大似然估计法等。作者提供了开源代码和数据,尽管代码可读性有待提高,但对研究者有参考价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言
今天分享的是一篇2021年发表在Applied Sciences上的关于机器人参数辨识的文章综述,涵盖了一众机器人参数辨识方法,包括了逆动力学辨识模型结合普通最小二乘法(OLS)、加权最小二乘法(WLS)、迭代重加权最小二乘法(IRLS)和总体最小二乘法(TLS)的辨识方法,还包括了如辅助变量法(IV)、最大似然估计法(ML),还有其他一系列的方法,我就不一一列举了。也是第一次见到对辨识方法总结很全,而且代码和数据都开源的工作。这个开源代码的可食用性较差一点,需要花费一定的时间才能去理清整个代码架构,直接拿出来照搬可能也得花点功夫。


下面是文章的相关链接:
文章标题:Inertial Parameter Identification in Robotics: A Survey
文章链接:https://www.mdpi.com/2076-3417/11/9/4303(开源期刊,自行下载)
开源数据:https://zenodo.org/record/4728085
开源程序:https://github.com/TUM-ICS/BIRDy


关于上面这个开源数据的网站,是需要挂梯子才能进去,而且晚上的下载速度贼慢,好像白天会好一点。
在这里插入图片描述

我已经下载下来放在网盘上了,有兴趣的同学可以试试哈。
百度网盘
链接:https://pan.baidu.com/s/1JF2cojakFcc5WrYfjBihnA?pwd=6932
提取码: 6932

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值