拷贝数变异CNVs模拟数据生成及绘制CNV图

本文介绍了如何使用R语言中的karyoploteR包生成并模拟拷贝数变异(CNVs)数据,包括DEL和DUP类型,并展示了如何将这些数据可视化,以显示在不同样本间的分布情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拷贝数变异CNVs模拟数据生成及绘制CNV图

R包安装

if (!require("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

BiocManager::install("karyoploteR")
BiocManager::install("BSgenome.Hsapiens.UCSC.hg19")

生成模拟CNV数据

library(karyoploteR)
set.seed(1234)

# simulate CNV data generation
cnvs.data <- data.frame()

for(nsample in 1:10) {
  # 模拟CNVs数据
  data <- toDataframe(createRandomRegions(nregions=10, length.mean = 20e6, 
                                        length.sd=5e6, mask=NA, non.overlapping = TRUE))
  
  # 整理为chrom:start-end格式
  intervals <- paste0(data [,1], ":", data [,2], "-", data [,3])
  
  # 合并
  cnvs.data <- rbind(cnvs.data, data.frame(Sample=paste0("Sample", nsample),
                                         Type=rep(c("DEL", "DUP"), 5),
                                         Region=intervals,  stringsAsFactors=FALSE))
}

head(cnvs.data)
#    Sample Type                   Region
# 1 Sample1  DEL chr5:138146110-152110780
# 2 Sample1  DUP  chr5:91067585-112454730
# 3 Sample1  DEL   chr3:17996869-43419073
# 4 Sample1  DUP chr1:129050019-137321529
# 5 Sample1  DEL   chr4:12466095-34611717
# 6 Sample1  DUP  chr18:22535664-45065942

绘制CNVs在各样本分布情况

基于karyoploteR包进行CNVs的绘图,红色表示DUP区域,绿色表示DEL区域。

# 样本名称
samples <- as.character(unique(cnvs.data$Sample))

# 样本数量
num.samples <- length(samples)

kp <- plotKaryotype(plot.type = 4, ideogram.plotter = NULL, labels.plotter = NULL)
kpAddChromosomeNames(kp, srt=45)
kpAddCytobandsAsLine(kp)

for(nsample in seq_len(num.samples)) {
  s <- samples[nsample]
  
  # 提取样本数据
  sample.regions <- cnvs.data[cnvs.data$Sample==s,]
  
  regs <- data.frame(do.call(rbind, strsplit(x = sample.regions$Region, 
                                             split = c(":|-"))), stringsAsFactors=FALSE)
  regs[,2] <- as.numeric(regs[,2])
  regs[,3] <- as.numeric(regs[,3])
  regs <- toGRanges(regs)
  
  # 绘图
  # 图Y轴"track"
  r0 <- (nsample-1)/num.samples
  # 0.05为样本之间的间隔
  r1 <- (nsample)/num.samples - 0.05 
  
  # 添加label
  kpAddLabels(kp, r0=r0, r1=r1, labels = s)
  kpAbline(kp, h=0.5, r0=r0, r1=r1, col="#888888")
  
  # 绘制DUP和DEL区域CNVs
  kpSegments(kp, data=regs[sample.regions$Type=="DUP"], y0 = 0.5, y1=0.5, r0=r0, r1=r1, col="red", lwd=5)
  kpSegments(kp, data=regs[sample.regions$Type=="DEL"], y0 = 0.5, y1=0.5, r0=r0, r1=r1, col="green", lwd=5)
}

CNV 区域在各样本分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信与基因组学

每一份鼓励是我坚持下去动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值