【智能算法】郊狼算法(COA)原理及实现

在这里插入图片描述


1.背景

2018年,Juliano等人受到郊狼生活习性启发,提出了郊狼算法(Coyote Optimization Algorithm ,COA)。

2.算法原理

2.1算法思想

COA是基于郊狼群体生存行为(出生、死亡和迁移)的启发式优化算法,该算法模仿了郊狼在捕食行为中的策略和社会结构。

2.2算法过程

个体离群概率
自然界群体数量不是固定的,存在个体离群现象。
P e = 0.005 ⋅ N c 2 (1) P_e=0.005\cdot N_c^2\tag{1} Pe=0.005Nc2(1)
文化趋势
COA存在个体最优引导(头狼),影响整个种群文化趋势:
a l p h a p , t = { s o c c p , t ∣ a r g c = { 1 , 2 , . . . , N c } m i n f ( s o c c p , t ) } (2) alpha^{p,t}=\{soc_{c}^{p,t}|arg_{c=\{1,2,...,N_{c}\}}minf(soc_{c}^{p,t})\}\tag{2} alphap,t={soccp,targc={1,2,...,Nc}minf(soccp,t)}(2)
c l u t j p , t = { O ( N c + 1 ) / 2 , j p , t , N c 是奇数 O ( N c + 1 ) / 2 , j p , t + O ( N c ) / 2 , j p , t , N c 是偶数 (3) \left.clut_j^{p,t}=\left\{\begin{matrix}O_{(Nc+1)/2,j}^{p,t},N_c\text{是奇数}\\O_{(Nc+1)/2,j}^{p,t}+O_{(Nc)/2,j}^{p,t},N_c\text{是偶数}\end{matrix}\right.\right.\tag{3} clutjp,t={O(Nc+1)/2,jp,t,Nc是奇数O(Nc+1)/2,jp,t+O(Nc)/2,jp,t,Nc是偶数(3)
出生与死亡
影响种群重要的两件事件出生与死亡,表述为:
p u p j p , t = { x m 1 , j p , t , r a n d j < P s o r j = j 1 x m 1 , j p , t , r a n d j ≥ P s + P a o r j = j 2 R j , r a n d j , 其他 (4) pup_j^{p,t}=\begin{cases}x_{m_1,j}^{p,t},rand_j<Ps\quad or\quad j=j_1\\x_{m_1,j}^{p,t},rand_j\geq Ps+Pa\quad or\quad j=j_2\\R_j,rand_j,\text{其他}\end{cases}\tag{4} pupjp,t= xm1,jp,t,randj<Psorj=j1xm1,jp,t,randjPs+Paorj=j2Rj,randj,其他(4)
文化趋势影响
δ 1 = a l p h a p , t − x c r 1 p , t , δ 2 = c u l t p , t − x c r 2 p , t (5) \delta_{1}=alpha^{p,t}-x_{cr_{1}}^{p,t},\delta_{2}=cult^{p,t}-x_{cr_{2}}^{p,t}\tag{5} δ1=alphap,txcr1p,t,δ2=cultp,txcr2p,t(5)
种群更新
n e w _ x i p , t = x i p , t + r 1 δ 1 + r 2 δ 2 x i p , t + 1 = { n e w _ x i p , t , f ( n e w _ x i p , t ) < f ( x i p , t ) x i p , t , 其他 (6) new\_x_i^{p,t}=x_i^{p,t}+r_1\delta_1+r_2\delta2\\\\x_i^{p,t+1}=\begin{cases}new\_x_i^{p,t},f(new\_x_i^{p,t})<f(x_i^{p,t})\\x_i^{p,t},\text{其他}\end{cases}\tag{6} new_xip,t=xip,t+r1δ1+r2δ2xip,t+1={new_xip,t,f(new_xip,t)<f(xip,t)xip,t,其他(6)
伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Pierezan J, Coelho L D S. Coyote optimization algorithm: a new metaheuristic for global optimization problems[C]//2018 IEEE congress on evolutionary computation (CEC). IEEE, 2018: 1-8.

  • 15
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值