【多机器人】基于A星实现多机器人避障路径规划附Matlab代码

本文介绍了一种利用A*算法进行多机器人避障路径规划的方法,通过在复杂环境中高效规划无碰撞路径,确保机器人安全到达目标,适用于多机器人协同作业。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要

随着机器人技术的快速发展,多机器人协同作业已成为当前研究的热点。多机器人避障路径规划是多机器人协同作业中的关键技术之一,其目的是为多个机器人规划出无碰撞的路径,使机器人能够高效、安全地到达目标位置。本文介绍了一种基于A星算法的多机器人避障路径规划方法,该方法具有较高的规划效率和鲁棒性,适用于复杂环境下的多机器人协同作业。

引言

多机器人协同作业是指多个机器人共同完成一项任务。在多机器人协同作业中,避障路径规划是至关重要的,其目的是为每个机器人规划出一条无碰撞的路径,使机器人能够高效、安全地到达目标位置。

传统的避障路径规划方法主要有基于势场法、基于采样法和基于搜索法。势场法通过设置斥力场和引力场来引导机器人运动,但容易陷入局部最优解;采样法通过随机采样和迭代优化来搜索路径,但计算量大;搜索法通过搜索状态空间来寻找最优路径,但搜索效率低。

A星算法

A星算法是一种启发式搜索算法,它结合了广度优先搜索和深度优先搜索的优点,具有较高的规划效率和鲁棒性。A星算法通过维护一个开放列表和一个关闭列表来搜索状态空间。开放列表中存储着待探索的状态,关闭列表中存储着已探索的状态。

A星算法每次从开放列表中选择具有最小f值的状态进行扩展,其中f值由g值和h值组成。g值表示从起始状态到当前状态的实际代价,h值表示从当前状态到目标状态的估计代价。

基于A星的多机器人避障路径规划

基于A星的多机器人避障路径规划方法主要包括以下步骤:

  1. **环境建模:**将环境表示为一个网格地图,其中每个网格单元表示一个可通行或不可通行的区域。

  2. **起始状态和目标状态:**确定每个机器人的起始位置和目标位置。

  3. **状态空间:**将网格地图中的每个网格单元表示为一个状态,并定义状态之间的转移规则。

  4. **代价函数:**定义状态之间的代价函数,其中考虑了机器人之间的碰撞风险和路径长度。

  5. **A星搜索:**对每个机器人分别执行A星搜索,找到从起始状态到目标状态的无碰撞路径。

  6. **路径优化:**对规划出的路径进行优化,以减少路径长度和碰撞风险。

📣 部分代码

function modulator = getModulator(modType, sps, fs)%getModulator Modulation function selector%   MOD = getModulator(TYPE,SPS,FS) returns the modulator function handle%   MOD based on TYPE. SPS is the number of samples per symbol and FS is%   the sample rate.switch modType  case "BPSK"    modulator = @(x)bpskModulator(x,sps);  case "QPSK"    modulator = @(x)qpskModulator(x,sps);  case "8PSK"    modulator = @(x)psk8Modulator(x,sps);  case "16QAM"    modulator = @(x)qam16Modulator(x,sps);  case "64QAM"    modulator = @(x)qam64Modulator(x,sps);  case "GFSK"    modulator = @(x)gfskModulator(x,sps);  case "CPFSK"    modulator = @(x)cpfskModulator(x,sps);  case "PAM4"    modulator = @(x)pam4Modulator(x,sps);  case "B-FM"    modulator = @(x)bfmModulator(x, fs);  case "DSB-AM"    modulator = @(x)dsbamModulator(x, fs);  case "SSB-AM"    modulator = @(x)ssbamModulator(x, fs);endendfunction src = getSource(modType, sps, spf, fs)%getSource Source selector for modulation types%    SRC = getSource(TYPE,SPS,SPF,FS) returns the data source%    for the modulation type TYPE, with the number of samples%    per symbol SPS, the number of samples per frame SPF, and%    the sampling frequency FS.switch modType  case {"BPSK","GFSK","CPFSK"}    M = 2;    src = @()randi([0 M-1],spf/sps,1);  case {"QPSK","PAM4"}    M = 4;    src = @()randi([0 M-1],spf/sps,1);  case "8PSK"    M = 8;    src = @()randi([0 M-1],spf/sps,1);  case "16QAM"    M = 16;    src = @()randi([0 M-1],spf/sps,1);  case "64QAM"    M = 64;    src = @()randi([0 M-1],spf/sps,1);  case {"B-FM","DSB-AM","SSB-AM"}    src = @()getAudio(spf,fs);endend

⛳️ 运行结果

实验结果

为了验证该方法的有效性,我们在不同规模和复杂度的环境中进行了实验。实验结果表明,该方法能够高效、鲁棒地规划出多机器人无碰撞路径,即使在存在障碍物和动态环境的情况下。

结论

本文介绍了一种基于A星算法的多机器人避障路径规划方法,该方法具有较高的规划效率和鲁棒性,适用于复杂环境下的多机器人协同作业。该方法通过将A星算法与避障策略相结合,能够有效地避免机器人之间的碰撞,并规划出最优路径。

🔗 参考文献

[1] 吕东澔.基于混合算法的多机器人路径规划的设计与实现[D].天津理工大学,2014.

[2] 吕东澔.基于混合算法的多机器人路径规划的设计与实现[D].天津理工大学[2024-02-20].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
【资源说明】 基于CBS算法多AGV路径规划仿真系统源码+项目开发说明.zip 多Agent路径规划仿真系统 针对多AGV物流分拣场景建立的仿真模拟系统,是我的本科毕业设计 本系统使用p5.js编写,推荐使用atom等支持该语言的IDE编辑。 下载IDE后,下载插件 ```bash File -> Settings -> Packages Search p5js-toolbar and Install it ``` ## Run Locally 完成后开启p5js-toolbar ```bash Packages -> p5js-toolbar -> Toggle p5.js toolbar Click the run button and that's all ``` ## Optimizations ### V1.0 算法基本实现,逻辑已基本无bug 输入 : * agent:start,end * obstacles * map:rows,cols 输出: * 如果没冲突,给出每个agent的路径数组 #### 待实现 UI界面,参数调整接口,单步模式和直接运行模式。 ### V1.1 UI界面初步完成,目前提供参数如下: * 地图行数、列数、障碍物比例 * 障碍物、每辆小车的起点和终点都可以自由设定 * 运行功能(直接执行模式)和重置功能 ### V1.15 UI界面进一步完善,加入如下功能: * 可以添加小车 * 添加单步执行模式 * 显示当前运行状态 #### 待实现 删除小车功能,设定小车颜色(可选),加入预设的特殊布局地图、计时功能。 ### V1.2 删除小车功能完成 #### 问题记录 ![image-20201119153155889](C:\Users\AA\AppData\Roaming\Typora\typora-user-images\image-20201119153155889.png) 如图所示情况,绿色小车到达终点后,在实际情况中会离开,继续执行下一个任务,但在路径中,绿车停靠在终点,会和红车路径不断产生冲突,导致死循环,这是不合理的。 #### 解决方案 * 每个小车有一个任务列表,执行完一个就去做下一个。 * 在补全小车路径到maxT时,补为特殊点,即不会再和其它小车冲突的点。 ### V1.25 删除小车bug修复,计时功能初步完成,修改小车速度功能完成 #### 关于计时功能 对于单轮任务,需要对每个Agent的执行时间单独计时 最好拓展到多轮任务,对任务直接计时 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值