✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
随着机器人技术的快速发展,多机器人协同作业已成为当前研究的热点。多机器人避障路径规划是多机器人协同作业中的关键技术之一,其目的是为多个机器人规划出无碰撞的路径,使机器人能够高效、安全地到达目标位置。本文介绍了一种基于A星算法的多机器人避障路径规划方法,该方法具有较高的规划效率和鲁棒性,适用于复杂环境下的多机器人协同作业。
引言
多机器人协同作业是指多个机器人共同完成一项任务。在多机器人协同作业中,避障路径规划是至关重要的,其目的是为每个机器人规划出一条无碰撞的路径,使机器人能够高效、安全地到达目标位置。
传统的避障路径规划方法主要有基于势场法、基于采样法和基于搜索法。势场法通过设置斥力场和引力场来引导机器人运动,但容易陷入局部最优解;采样法通过随机采样和迭代优化来搜索路径,但计算量大;搜索法通过搜索状态空间来寻找最优路径,但搜索效率低。
A星算法
A星算法是一种启发式搜索算法,它结合了广度优先搜索和深度优先搜索的优点,具有较高的规划效率和鲁棒性。A星算法通过维护一个开放列表和一个关闭列表来搜索状态空间。开放列表中存储着待探索的状态,关闭列表中存储着已探索的状态。
A星算法每次从开放列表中选择具有最小f值的状态进行扩展,其中f值由g值和h值组成。g值表示从起始状态到当前状态的实际代价,h值表示从当前状态到目标状态的估计代价。
基于A星的多机器人避障路径规划
基于A星的多机器人避障路径规划方法主要包括以下步骤:
-
**环境建模:**将环境表示为一个网格地图,其中每个网格单元表示一个可通行或不可通行的区域。
-
**起始状态和目标状态:**确定每个机器人的起始位置和目标位置。
-
**状态空间:**将网格地图中的每个网格单元表示为一个状态,并定义状态之间的转移规则。
-
**代价函数:**定义状态之间的代价函数,其中考虑了机器人之间的碰撞风险和路径长度。
-
**A星搜索:**对每个机器人分别执行A星搜索,找到从起始状态到目标状态的无碰撞路径。
-
**路径优化:**对规划出的路径进行优化,以减少路径长度和碰撞风险。
📣 部分代码
function modulator = getModulator(modType, sps, fs)
%getModulator Modulation function selector
% MOD = getModulator(TYPE,SPS,FS) returns the modulator function handle
% MOD based on TYPE. SPS is the number of samples per symbol and FS is
% the sample rate.
switch modType
case "BPSK"
modulator = @(x)bpskModulator(x,sps);
case "QPSK"
modulator = @(x)qpskModulator(x,sps);
case "8PSK"
modulator = @(x)psk8Modulator(x,sps);
case "16QAM"
modulator = @(x)qam16Modulator(x,sps);
case "64QAM"
modulator = @(x)qam64Modulator(x,sps);
case "GFSK"
modulator = @(x)gfskModulator(x,sps);
case "CPFSK"
modulator = @(x)cpfskModulator(x,sps);
case "PAM4"
modulator = @(x)pam4Modulator(x,sps);
case "B-FM"
modulator = @(x)bfmModulator(x, fs);
case "DSB-AM"
modulator = @(x)dsbamModulator(x, fs);
case "SSB-AM"
modulator = @(x)ssbamModulator(x, fs);
end
end
function src = getSource(modType, sps, spf, fs)
%getSource Source selector for modulation types
% SRC = getSource(TYPE,SPS,SPF,FS) returns the data source
% for the modulation type TYPE, with the number of samples
% per symbol SPS, the number of samples per frame SPF, and
% the sampling frequency FS.
switch modType
case {"BPSK","GFSK","CPFSK"}
M = 2;
src = @()randi([0 M-1],spf/sps,1);
case {"QPSK","PAM4"}
M = 4;
src = @()randi([0 M-1],spf/sps,1);
case "8PSK"
M = 8;
src = @()randi([0 M-1],spf/sps,1);
case "16QAM"
M = 16;
src = @()randi([0 M-1],spf/sps,1);
case "64QAM"
M = 64;
src = @()randi([0 M-1],spf/sps,1);
case {"B-FM","DSB-AM","SSB-AM"}
src = @()getAudio(spf,fs);
end
end
⛳️ 运行结果
实验结果
为了验证该方法的有效性,我们在不同规模和复杂度的环境中进行了实验。实验结果表明,该方法能够高效、鲁棒地规划出多机器人无碰撞路径,即使在存在障碍物和动态环境的情况下。
结论
本文介绍了一种基于A星算法的多机器人避障路径规划方法,该方法具有较高的规划效率和鲁棒性,适用于复杂环境下的多机器人协同作业。该方法通过将A星算法与避障策略相结合,能够有效地避免机器人之间的碰撞,并规划出最优路径。
🔗 参考文献
[1] 吕东澔.基于混合算法的多机器人路径规划的设计与实现[D].天津理工大学,2014.
[2] 吕东澔.基于混合算法的多机器人路径规划的设计与实现[D].天津理工大学[2024-02-20].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类