✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文介绍了使用模型预测控制 (MPC) 实现无人机轨迹跟踪的方法。MPC 是一种先进的控制技术,通过预测未来状态并优化控制输入来实现对复杂系统的控制。本文详细介绍了 MPC 的原理、无人机模型和轨迹跟踪算法的实现。
引言
无人机在各种应用中发挥着越来越重要的作用,例如航拍、货物配送和搜索救援。对于无人机来说,自主导航和轨迹跟踪是至关重要的能力。MPC 是一种强大的控制技术,可以有效地实现无人机的轨迹跟踪。
模型预测控制 (MPC)
MPC 是一种基于模型的控制技术,它通过预测未来状态并优化控制输入来控制系统。MPC 的基本原理如下:
-
**模型预测:**使用系统模型预测未来一段时间内的系统状态,给定当前状态和控制输入。
-
**成本函数:**定义一个成本函数,衡量预测状态与期望状态之间的偏差。
-
**优化:**在给定的预测范围内,找到控制输入序列,以最小化成本函数。
-
**实施:**应用优化后的第一个控制输入到系统中。
无人机模型
为了设计 MPC 控制器,需要一个准确的无人机模型。该模型应该能够描述无人机的动力学和运动学特性。本文使用了一个六自由度 (6DOF) 无人机模型,它考虑了无人机的平移和旋转运动。
轨迹跟踪算法
基于 MPC 的轨迹跟踪算法如下:
-
**轨迹生成:**根据任务要求生成期望的轨迹。
-
**状态估计:**使用传感器数据估计无人机的当前状态。
-
**模型预测:**使用无人机模型预测未来状态。
-
**成本函数:**定义一个成本函数,衡量预测状态与期望状态之间的偏差。
-
**优化:**找到控制输入序列,以最小化成本函数。
-
**实施:**应用优化后的第一个控制输入到无人机中。
仿真结果
为了评估 MPC 轨迹跟踪算法的性能,在仿真环境中进行了仿真。仿真结果表明,MPC 控制器能够有效地跟踪期望轨迹,即使在存在干扰和参数不确定性的情况下。
结论
本文介绍了基于 MPC 的无人机轨迹跟踪方法。MPC 是一种强大的控制技术,它通过预测未来状态并优化控制输入来实现对复杂系统的控制。仿真结果表明,MPC 轨迹跟踪算法能够有效地跟踪期望轨迹,即使在存在干扰和参数不确定性的情况下。MPC 是一种有前途的方法,可以用于各种无人机应用。
📣 部分代码
function target_idx = calc_target_index(x,y, refPos_x,refPos_y)
i = 1:length(refPos_x)-1;
dist = sqrt((refPos_x(i)-x).^2 + (refPos_y(i)-y).^2);
[~, target_idx] = min(dist);
end
⛳️ 运行结果
🔗 参考文献
[1] 邹凯,蔡英凤,陈龙,等.基于增量线性模型预测控制的无人车轨迹跟踪方法[J].汽车技术, 2019(10):7.DOI:10.19620/j.cnki.1000-3703.20190893.
[2] 刘斐.基于模型预测控制的无人机轨迹跟踪方法研究[D].湖北工业大学[2024-03-27].DOI:CNKI:CDMD:2.1017.815495.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类