✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在全球气候变化和能源危机的双重压力下,发展绿色、高效的交通运输系统已成为当务之急。电动汽车,尤其是燃料电池混合动力汽车(Fuel Cell Hybrid Vehicles, FCHVs),因其零排放和高能量密度等优点,被视为未来交通的重要发展方向。然而,FCHVs的能源效率和性能在城市交通中,尤其是在通过信号交叉口时,面临着独特的挑战。信号交叉口作为城市交通网络的关键节点,其拥堵和频繁的启停行为不仅会增加燃料消耗和排放,还会对车辆的动力系统造成额外的负担。因此,如何优化FCHVs在信号交叉口的驾驶策略,以实现经济性和环保性的最优平衡,是当前研究的热点。
随着车联网(Connected Vehicles, CVs)技术的飞速发展,车辆能够获取实时交通信息,例如信号灯状态、前车速度等。这些信息为实现更智能、更具前瞻性的驾驶策略提供了可能。将车联网技术与FCHVs的能量管理策略相结合,通过预测性的控制,可以有效降低通过信号交叉口时的燃料消耗和排放。传统的基于规则或瞬时优化的控制方法往往难以应对信号交叉口复杂的动态环境。为此,基于模型的预测控制(Model Predictive Control, MPC)因其能够利用未来信息并处理系统约束的特点,在车辆动力系统能量管理领域展现出巨大的潜力。
本文着眼于互联FCHVs通过信号交叉口的生态驾驶问题,旨在通过双层凸优化框架,实现信号交叉口通行过程的燃料效率最大化和排放最小化。上层优化问题利用车辆联网获取的信号灯信息、前车信息等,求解最优的速度轨迹,以最小化通过交叉口的时间和燃料消耗,并最大化车辆的再生制动能量回收。下层优化问题则在给定上层优化求解的速度轨迹下,求解FCHV动力系统的最优功率分配策略,以最小化氢燃料消耗,并保持燃料电池系统的健康。这种双层结构的优势在于将复杂的生态驾驶问题分解为两个相对独立的子问题,并通过迭代的方式协同优化,最终实现全局最优。通过将问题转化为凸优化形式,可以保证全局最优解的存在,并提高求解效率。
⛳️ 运行结果
🔗 参考文献
[1] 李亚鹏,唐小林,胡晓松.基于分层式控制的混合动力汽车生态驾驶研究[J].汽车工程, 2023, 45(4):551-560.DOI:10.19562/j.chinasae.qcgc.2023.04.003.
[2] 徐方琳.辅助驾驶场景下边缘计算资源分配方法研究[D].华中科技大学[2025-04-19].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类