单应矩阵描述了图像中2个平面上的像素点的转换关系。
一个世界坐标系下的三维点到图像平面的变换可以表示为:
Z c ( u v 1 ) = K T ( X w Y w Z w 1 ) Z_c\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = KT\begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix} Zc⎝⎛uv1⎠⎞=KT⎝⎜⎜⎛XwYwZw1⎠⎟⎟⎞
其中 K K K为相机内参, T T T为相机相对于世界坐标的位姿。
简化形式后可以得到:
( u v 1 ) = ( m 00 m 01 m 02 m 03 m 10 m 11 m 12 m 13 m 20 m 21 m 22 m 23 m 30 m 31 m 32 m 33 ) ( X w Y w Z w 1
单应矩阵
最新推荐文章于 2023-02-15 16:16:06 发布
单应矩阵描述了图像中像素点的转换关系,通过简化后的数学表达式可以将不同坐标系下的点进行映射。实验部分展示了如何使用单应矩阵将广告牌替换为棋盘格,实现图像的几何变换。操作时需按照指定顺序选取四个角点。
摘要由CSDN通过智能技术生成