为了避免各个概念的混淆,还是把这两个内容先梳理一下。与其说梳理两种惯导方式,还不如说是一种,因为游移惯导就是为了解决指北惯导跟踪不上地理系而改进的,仅与指北惯导存在一个游移方位角 α α 的关系。另外在学习中看了好几本不同的书,所以字母表示我都感觉混乱。在这篇梳理中尽量保证与前面推导过程字母的统一。
一、指北方位惯导系统
1、指北方位惯导的力学编排
(1)平台指令角速度
在指北惯导中,理想情况下平台系p与地理系g是重合的,所以在力学编排中就认为他们是重合,误差分析时才考虑两者不重合的情况。注意是平台跟踪地理系,平台系与地理系的指向始终重合,而不是运载体;运载体的姿态需要根据平台相对于运载体的转动信息输出。
平台跟踪地理系的过程中,对平台施加的指令角速度为
ω⃗ gig
ω
→
i
g
g
,即g系相对于惯性系i的角速度在g系的投影。
ω⃗ ig
ω
→
i
g
由两部分组成,分别为:
ω⃗ ie
ω
→
i
e
为地球相对于i系的角速度在g系的投影,即地球自转角速度
Ω⃗
Ω
→
在g系中的投影,也可表示为
Ω⃗ g
Ω
→
g
;
ω⃗ geg
ω
→
e
g
g
为运载体相对于地球的角速度在g系中的投影。
那么指令角速度可以通过这样的路线求解:
(2)速度方程
速度方程中会用到平台指令角速度中的 Ω⃗ g ω⃗ geg Ω → g ω → e g g
为了明确区分,把投影到的坐标系也进行了标记
(3)经纬度方程
经纬度求解通过速度方程求解。
2、指北方位惯导的误差方程
(1)速度误差方程
前面已经提及,分析误差时要考虑p系与g系之间的偏差。两者之间的转换矩阵为 Cpg C g p ,计算系c。通过比力方程求c系和g系中的速度,然后求误差。
注意,比力方程中
(2)位置误差方程
经度误差的求解同理。
(3)平台姿态误差
平台系与地理系之间的偏差角 ϕ ϕ
二、游移方位惯导系统
与指北方位惯导的不同之处就是游移方位角的存在,过程中注意一下即可。也要注意此时的平台系p不与地理系g重合,夹角就是游移方位角。可以假定与p系重合的为理想平台系G,这在误差分析中会得到应用,分析方法与指北惯导误差分析中的p系与g系相同。
1、游移方位惯导的力学编排
(1)平台指令角速度
注意 Ω⃗ p Ω → p 要通过将 Ω⃗ g Ω → g 向p系投影得到。
(2)速度方程
2、游移方位惯导的误差方程
这里用到理想的平台系G,理想情况下G系与p系重合,分析误差时要考虑两者之间的偏差。
(1)速度误差方程
(2)位置误差方程
(3)平台姿态误差方程
可能写的不够详细,以后想到再补充!