2025年开源RAG最佳选择:浙大与蚂蚁的 KAG 技术突破

1. KAG简介

浙江大学与蚂蚁集团推出的知识增强生成(KAG)框架,旨在解决传统检索增强生成(RAG)方法在多跳推理和复杂逻辑处理中的不足。KAG通过结合知识图谱(KGs)和创新技术,显著提升了大语言模型在专业领域问答中的准确性和效率。

KAG框架的五大创新亮点:

  1. LLM友好的知识表示:通过层次化的知识组织,使大语言模型更适应专业领域的知识处理。

  2. 知识图谱与文本块互索引:提高了数据检索的精确度和效率,增强了知识的整合能力。

  3. 逻辑形式引导推理:结合语言推理与符号推理,支持复杂的多轮推理和问题求解。

  4. 知识对齐与语义推理:通过语义推理对齐不同层次的知识,提升了推理的准确性。

  5. 模型能力增强:优化大语言模型的推理能力,提升了专业领域问答系统的整体表现。

在蚂蚁集团,KAG成功应用于电子政务电子健康项目。在电子政务中,KAG开发了一个高效的政府服务问答系统;在电子健康中,KAG提升了医疗问答系统的准确度,尤其在医学指标解读和推荐方面,展现了强大的推理能力。

不同 RAG 模型在三个多跳问答数据集上的端到端生成性能。粗体和下划线的值分别是最佳指标和第二佳指标

2. KAG与常见RAG优化方法的比较

KAG框架在多跳推理和复杂查询处理上明显优于传统的RAG方法。为了更好地理解KAG的优势,以下是与常见几种RAG优化方法的对比:

  • Light RAG 和 Graph RAG:这两种方法通过使用知识图谱保持实体间的逻辑连接,解决了传统RAG方法在处理实体之间关系时丧失逻辑连贯性的问题。它们通常通过简单的知识图谱索引来进行检索,较为依赖基础的相似性匹配。

  • KAG:相比于Light RAG和Graph RAG,KAG不仅仅保留了知识图谱中的实体关系,还引入了多跳问答推理能力。KAG框架的核心优势在于其通过逻辑形式推理引擎,将复杂问题分解为多个子问题,通过多次检索和推理逐步构建答案。KAG能够在不同的推理层面上进行跨模态的信息处理,使得多步推理问题得到有效解决。

简而言之,KAG不仅仅保持了知识图谱的优势,还通过更为复杂的推理流程,提升了LLM在处理复杂问题时的能力。

3. KAG在数据摄取和数据查询阶段的优化

KAG在数据摄取(Data Ingestion)和数据查询(Data Querying)两个阶段进行了诸多优化,以确保大语言模型能更准确、高效地响应复杂查询。以下是其在这两个阶段的创新:

KAG 架构图

数据摄取阶段的优化

  • LLM友好的知识表示:KAG使用LLMFriSPG框架,这是一种为LLM定制的知识表示方式,它将知识组织成层次结构,包括数据、信息和知识。该框架支持无模式的信息提取,以及模式约束的专业知识构建,有效解决了不同领域知识的表示问题。

  • 互索引系统:KAG建立了知识图谱和原始文本块之间的互索引系统,保证了知识图谱和文本块的统一表示、推理和检索。这种互索引方式使得KAG能够高效地从知识图谱中获取有价值的信息,同时增强了推理的深度和精度。

  • 语义分块:为了更好地适应LLM的输入要求,KAG将文档划分为语义一致的语义块,每个块都包含ID、摘要、主要文本等字段,并且维护原文档与分块之间的双向关系。这种分块方式使得每个语义块都能保持独立的上下文和主题一致性。

  • 信息提取与知识图谱构建:KAG通过信息提取(例如实体、事件、关系等)构建了KGfr(知识图谱框架),并通过互索引将这些提取的知识和文本块关联起来。通过这种方式,KAG能够更精确地进行知识的索引和推理。

数据查询阶段的优化

  • 逻辑形式引导的混合推理引擎:KAG使用逻辑形式引导的混合推理引擎,通过将自然语言问题转化为符号化的推理问题,实现了多种推理方式的组合,如文本检索、知识图谱推理、语言推理和数值计算。这种多元化的推理方式使得KAG能够更加精确地处理复杂的查询。

  • 多轮解题机制:在面对复杂问题时,KAG能够通过多轮推理机制反思和存储中间结果,确保问题得到有效解决。如果一个问题无法一次解决,系统会在全局记忆中存储结果,并生成补充性问题以进一步推理。

  • 语义推理与知识对齐:KAG利用语义推理知识对齐技术,通过对知识图谱中不同粒度的知识进行语义对齐,降低噪声,提高图谱的连通性和准确性。这使得KAG在处理需要深度理解的查询时,能够利用语义推理弥补知识图谱中的空白。

4. KAG在蚂蚁集团的电子政务及电子健康项目上的应用

KAG框架已在蚂蚁集团的电子政务和电子健康项目中得到了实际应用,以下是两个典型案例:

4.1 KAG在电子政务中的应用

在电子政务项目中,KAG被应用于构建一个支持政府服务问答的系统。该系统可以回答用户关于服务方法、所需材料、服务条件和服务地点等问题。系统的建设过程中,KAG框架使用了11,000篇政府服务文档,并通过逻辑形式推理、语义增强等技术,提升了问答准确性和服务效率。

在这里插入图片描述

相比传统 RAG,KAG 在电子政务项目中在精度和召回率上大幅提升

4.2 KAG在电子健康中的应用

在电子健康项目中,KAG被应用于构建一个医疗问答系统,能够回答用户关于疾病症状、疫苗接种、医疗指标等问题。系统使用了来自医学专家的权威文档,构建了超过180万个实体和40万个术语集,通过KAG框架,提供了超过700条医疗指标计算规则。这一应用显著提高了医疗问题的解答效率和准确性,特别是在复杂的医学问题上。

5. 快速上手

对于普通用户,KAG提供了简单的安装步骤,以下是如何快速启动KAG系统:

5.1 环境与依赖项安装

  • macOS 用户:macOS Monterey 12.6或更高版本

  • Linux 用户:CentOS 7 / Ubuntu 20.04或更高版本

  • Windows 用户:Windows 10 LTSC 2021或更高版本,配合WSL 2 / Hyper-V,Docker,Docker Compose

5.2 使用步骤

  1. 下载并启动KAG服务:

    curl -sSL https://raw.githubusercontent.com/OpenSPG/openspg/refs/heads/master/dev/release/docker-compose-west.yml -o docker-compose-west.yml  
    docker compose -f docker-compose-west.yml up -d  
    
    
  2. 访问KAG产品: 在浏览器中输入以下URL:http://127.0.0.1:8887

通过这些简单的步骤,用户可以快速启动并体验KAG框架的强大功能。

6. 总结

KAG(知识增强生成)框架通过结合知识图谱与大语言模型,显著提升了模型在处理复杂查询和多跳推理时的能力。通过在数据摄取和查询阶段的优化,KAG能够更精确地进行知识推理、信息检索及语义增强,尤其在电子政务和电子健康等专业领域应用中展现了其强大的实际效能。随着技术的不断发展,KAG将在更多领域中得到广泛应用,并有望继续推动大语言模型在专业领域的突破。

KAG不仅仅是一个技术框架,它的创新性将为更多行业带来智能化转型的机会,未来的发展值得期待。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### RAG框架概念 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了传统信息检索技术和现代自然语言处理中的生成模型的方法。这种方法允许机器学习系统不仅依赖于训练数据内部的知识,还能动态访问外部知识源,在面对新问题时获取最新、最准确的信息[^4]。 RAG 技术特别适用于那些需要持续更新或扩展背景资料的任务场景,比如问答系统、对话代理以及文档摘要等应用。通过引入外部资源作为补充材料,可以有效地减少由纯神经网络预测带来的不确定性——即所谓的“幻觉”现象,从而提高输出内容的真实性和可靠性。 ### 开源实现汇总 #### 1. **RAGFlow** 作为一个新兴的开源项目,RAGFlow 致力于简化基于 RAG 架构的应用开发过程。此工具包提供了多个预先配置好的模块和支持自动化的工作流设计,使得开发者能够更便捷地集成各种类型的数据库和服务接口,进而加速原型搭建和技术验证的速度[^2]。 - 显著特性: - 提供了一套完整的预构建组件; - 支持多种主流的数据存储方案; - 集成了先进的索引机制以优化查询效率; ```python from ragflow import PipelineBuilder pipeline = PipelineBuilder().add_retriever('elasticsearch').add_generator('transformers') ``` #### 2. **基于ChatGLM 和LangChain 实现的大规模离线部署方案** 这类解决方案专注于为企业级用户提供安全可控且高效的本地化部署选项。借助强大的中文理解能力(如 ChatGLM),再加上灵活易用的应用编程接口(APIs),这套组合拳可以在不连接互联网的情况下完成复杂的语义理解和响应生成任务[^3]。 ```bash git clone https://github.com/your-repo/chatglm-langchain.git cd chatglm-langchain pip install -r requirements.txt python app.py ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值