OpenPCDet v0.5版本的安装与测试

本文详细介绍了如何安装和测试OpenPCDet v0.5,包括PyTorch 1.10、spconv 1.2.1的安装步骤,以及使用open3d进行点云数据的可视化。同时,提供了测试预训练模型的命令和数据格式说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pointpillar相关的其它文章链接如下:

  1. 【论文阅读】CVPR 2019| PointPillars: 基于点云的快速编码目标检测框架(Fast Encoders for Object Detection from Point Clouds)
  2. OpenPCDet v0.5版本的安装与测试
  3. openpcdet之pointpillar代码阅读——第一篇:数据增强与数据处理
  4. openpcdet之pointpillar代码阅读——第二篇:网络结构
  5. openpcdet之pointpillar代码阅读——第三篇:损失函数的计算

OpenPCDet更新了最新版本v0.5,同时也支持open3d。因为之前也没怎么用过mayavi,本来还想基于openpcdet 0.3版本,自己写一个open3d的显示,看到官方更新了一个最新版,果断安装最新版使用了,效果还不错,于是写一个相关的使用教程吧。

1. 安装OpenPCDet

1.1 安装PyTorch

之前openpcdet的v0.3版本最高只支持pytorch1.5版本,现在最高支持到了pytorch1.10版本了!我这里安装的pytorch1.10。v0.5支持的pytorch为:

PyTorch 1.1 or higher (tested on PyTorch 1.1, 1,3, 1,5~1.10)

我这里安装的是1.10版本,安装方式如下:

conda install pytorch==1.9.1 torchvision==0.10.1 torchaudio==0.9.1 cudatoolkit=10.2 -c pytorch

1.2 安装spconv

openpcdet对spconv的支持也更加的友好了,最高支持到spconv2.x版本,支持版本如下:

spconv v1.0 (commit 8da6f96) or spconv v1.2 or spconv v2.x

这几个spconv版本都可以安装,但是要提醒注意的是,spconv和pytorch的版本要求对应,如果安装错误的spconv的版本,则使用openpvdet会报错,别问我怎么知道的。。。这里我使用的是spconv 1.2.1版本。

对于openpcdet v0.5版本,注意pytorch与spconv的版本问题。
在这里插入图片描述

(1)spconv1.2

在这介绍一下spconv v1.2.1版本的安装,安装步骤如下:

#安装libboost
sudo apt-get install libboost-all-dev

# 下载spconv,并切换分支
git clone https://github.com/traveller59/spconv.git
git checkout  -b v1.2 origin/v1.2.1 

#下载pybind11,并把pybind11放入spconv项目中的third_party对应的目录中
git clone https://github.com/pybind/pybind11

cd spconv
python3 setup.py bdist_wheel
#如setup.py这一步报错,可能需要你删掉build/ dist/ spconv.egg-info/,这几个文件夹之后再编译

cd ./dist
pip install spconv-1.2.1-cp36-cp36m-linux_x86_64.whl

测试是否安装成功

python3
import spconv

(2)spconv 2.x

pip和源码的方式都可以安装,安装方式如下:

  • pip安装
CPU (Linux Only)pip install spconv pypi
CUDA 10.2pip install spconv-cu102
CUDA 11.1pip install spconv-cu111
CUDA 11.3 (Linux Only)pip install spconv-cu113
CUDA 11.4pip install spconv-cu114
  • 源码安装
pip install spconv-cu102 -i https://pypi.tuna.tsinghua.edu.cn/simple
#cumm安装
git clone https://github.com/FindDefinition/cumm
cd ./cumm
pip install -e .

#spconv安装
git clone https://github.com/traveller59/spconv
cd ./spconv
pip install -e .

1.3 安装openPCDet v0.5

下面用到了加速!

git clone https://github.com/open-mmlab/OpenPCDet.git
cd OpenPCDet
pip install -r requirements.txt
python setup.py develop
  • 测试是否安装成功
python3 
import pcdet

2. 显示

可以在自定义点云数据上测试预训练的模型并可视化预测结果

2.1 安装可视化工具open3d

open3d和mayavi都可以使用,个人比较习惯使用open3d,使用国内源(https://pypi.tuna.tsinghua.edu.cn/simple)安装如下:

pip3 install open3d -i https://pypi.tuna.tsinghua.edu.cn/simple

2.2 测试训练出来的模型效果

测试训练的命令如下:

python3 demo.py --cfg_file cfgs / kitti_models / pv_rcnn.yaml \
    --ckpt pv_rcnn_8369.pth \
    --data_path $ {POINT_CLOUD_DATA}

这${POINT_CLOUD_DATA}可能是以下格式:

  • 使用单个numpy文件(如)转换的自定义数据my_data.npy。
  • 带有目录的转换后的自定义数据可用于测试多个点云数据。
  • 内的原始KITTI.bin数据data/kitti,例如data/kitti/training/velodyne/000008.bin。
  • bin数据测试
python3 demo.py --cfg_file cfgs / kitti_models / pv_rcnn.yaml \
    --ckpt pv_rcnn_8369.pth \
    ../data/kitti/testing/velodyne/000008.bin 
  • npy数据测试
python3 demo.py \
	--cfg_file cfgs/kitti_models/pointpillar.yaml \
	--ext .npy\
	--ckpt ../pth/my.pth \
	--data_path ../train_data/npy/498.npy 

我这里测试的npy格式和pointpillars代码,官方训练的代码只有3类,我个人训练的5类,所以显示的时候需要增加一些颜色配置,不然会报错,效果如下:

在这里插入图片描述


参考官方github链接:https://github.com/open-mmlab/OpenPCDet

### 如何安装 OpenPCDet #### 系统需求准备 为了成功安装和配置 OpenPCDet,在开始之前需确认操作系统为 Ubuntu 22.04 或者其他兼容版本。对于硬件方面的要求,建议使用配备有 NVIDIA GPU 的计算机来加速训练过程。 #### 安装NVIDIA显卡驱动程序 确保已正确安装适用于系统的最新版 NVIDIA 显卡驱动程序[^1]。这一步骤至关重要,因为后续的 CUDA 和 cuDNN 库依赖于这些驱动程序正常工作。 #### 安装CUDAcuDNN 按照官方指南完成 CUDA 11.8 版本以及配套 cuDNN 库的安装。此步骤同样基于所使用的硬件平台而有所不同;务必参照具体设备对应的文档进行操作。 #### 创建Python虚拟环境 推荐创建一个新的 Python 虚拟环境用于隔离不同项目的依赖关系。可以通过 `conda` 或者 `venv` 工具轻松实现这一点: ```bash # 使用 conda 创建名为 opencd_env 的新环境,并激活它 conda create -n opencd_env python=3.7 conda activate opencd_env ``` #### 安装PyTorch及相关库 根据个人计算资源情况选择合适的 PyTorch 版本(CPU/GPU),并通过 pip 命令行工具执行安装命令: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 注意这里选择了支持 CUDA 11.3 的 PyTorch 构建版本作为例子,请依据实际情况调整 URL 参数[^3]。 #### 获取OpenPCDet源码并设置开发环境 通过 Git 将最新的 OpenPCDet 源代码克隆至本地机器上,接着进入该项目文件夹内运行如下指令以满足所有必需项的需求: ```bash git clone https://github.com/open-mmlab/OpenPCDet.git cd OpenPCDet pip install -r requirements.txt ``` 特别需要注意的是 Spconv (Sparse Convolution) 组件的编译安装,这是处理三维点云数据的核心模块之一。遵循特定指导完成其构建流程能够显著提升性能表现。 #### 测试安装成果 最后验证整个框架能否顺利启动 demo 示例程序,以此检验先前所做的准备工作是否无误。如果一切正常,则表明已经成功搭建好了 OpenPCDet 开发环境。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非晚非晚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值