ue4中的BRDF

本文介绍了UE4中BRDF的实现,特别是Cook-Torrance模型,结合蒙特卡洛积分方法解决复杂积分问题。还探讨了重要性采样在提升计算效率中的应用,以及GGX函数在PDF中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如需转载本文,请声明作者及出处。

一 蒙特卡洛方法:

              

若要求这样一个积分的解,按牛顿-布来尼茨公式来求解的话,自然是先求出被积函数f(x)的原理函数,假设为F(x),再求F(b)-F(a)来求出积分的解。

这样求解的一个前提是先求出被积函数的原函数,若被积函数是一个非常复杂的函数,比如这样一个函数:

 

那这样的被积函数,原函数是很难求解的,所以,这个时候为了求积分的解,就要使用蒙特卡洛方法了。

蒙特卡洛积分公式为:

                                                     

可变形为,其中pdf为概率分布函数。:

                                                                             

这个变形直观的理解为下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值