基于YOLO11的实时空车位与占据车位检测系统

智能停车系统

基于YOLO11的实时车位检测系统

本项目采用定制训练的YOLOv11模型,通过深度学习技术检测空闲/占用停车位。模型基于PK数据集训练,并部署于树莓派实现实时监控。
在这里插入图片描述

📋 目录

  • 项目简介
  • 数据集
  • 模型架构
  • 环境安装
  • 模型训练
  • 性能评估
  • 树莓派部署
  • 实验结果
  • 未来改进
  • 许可协议
    在这里插入图片描述

📖 项目背景
随着车辆保有量激增,城市停车管理已成为重要挑战。传统人工巡查效率低下,导致车辆空转寻位,加剧碳排放。

本系统通过摄像头实时画面,自动识别车位状态。实现流程包括:

  1. 使用PKLot数据集进行数据采集与预处理
  2. 基于Ultralytics YOLO框架训练模型
  3. 模型验证与性能评估
  4. 部署至树莓派实现实时推理
    在这里插入图片描述

📂 数据集
采用公开的PKLot数据集,关键特性:

  • 数据来源:通过Roboflow获取
  • 多样性:包含不同天气、时段的停车场景
  • 标注规范:YOLO格式标注(边界框坐标+车位状态标签)
  • 鲁棒性:覆盖光照变化、车辆尺寸差异、局部遮挡等真实场景

🧠 模型架构
使用YOLO11高性能检测模型,核心参数:

  • 输入分辨率:640×640像素
  • 训练轮次:10 epochs
  • 优化器:默认SGD/Adam
  • 损失函数:
    • 定位损失(边界框回归)
    • 目标置信度损失
    • 分类损失(空闲/占用判断)
      轻量化设计适配树莓派等边缘设备

⚙️ 环境安装

  1. 安装依赖:
    pip install ultralytics opencv-python matplotlib numpy
    
  2. Colab用户可直接安装:
    !pip install ultralytics
    

在这里插入图片描述

🚀 模型训练
步骤:

  1. 准备PKLot数据集(需包含data.yaml定义类别)
  2. 加载预训练模型:
    from ultralytics import YOLO
    model = YOLO('yolov8n.pt')  # 或自定义YOLO11模型
    
  3. 启动训练:
    model.train(data='path/to/data.yaml', epochs=10, imgsz=640)
    

📈 性能评估

  1. 验证集测试:
    results = model.val()
    
  2. 可视化预测:
    model.predict('test_image.jpg', save=True)
    

评估指标:mAP、精确率、召回率

🖥️ 树莓派部署

  1. 将训练好的best.pt模型传输至树莓派
  2. 连接摄像头模块
  3. 运行实时检测脚本:
    import cv2
    from ultralytics import YOLO
    
    model = YOLO('best.pt')
    cap = cv2.VideoCapture(0)
    
    while cap.isOpened():
        ret, frame = cap.read()
        results = model.predict(frame, conf=0.5)
        cv2.imshow('Smart Parking', results[0].plot())
        if cv2.waitKey(1) == ord('q'):
            break
    

📊 实验结果
训练后模型表现优异(详见Colab示例图像)

🔮 未来改进

  • 通过数据增强和延长训练提升精度
  • 开发IoT仪表盘远程监控车位状态
  • 采用TensorRT/OpenVINO优化边缘端推理效率

(注:本系统可作为智慧城市基础设施的低成本解决方案原型)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值