矩阵打洞(初等变换矩阵)是线性代数的基本功。
打洞技巧是矩阵一行减另一行的若干倍,或一列减另 一列的若干倍这两类初等变换的推广
利用分块矩阵的乘法将矩阵的某个块变为零
(
A
B
C
D
)
=
(
I
0
C
A
−
1
I
)
(
A
B
0
D
−
C
A
−
1
B
)
\left( \begin{array} { l l } { A } & { B } \\ { C } & { D} \end{array}\right)= \left( \begin{array} { l l } { I } & { 0 } \\ { C A^{-1}} & { I} \end{array}\right )\left( \begin{array} { l l } { A } & { B } \\ { 0 } & { D-C A^{-1}B} \end{array}\right)
(ACBD)=(ICA−10I)(A0BD−CA−1B)
( A B C D ) = ( I 0 C A − 1 I ) ( A B 洞 D − C A − 1 B ) \left( \begin{array} { l l } { A } & { B } \\ { C } & { D} \end{array}\right)= \left( \begin{array} { l l } { I } & { 0 } \\ { C A^{-1}} & { I} \end{array}\right )\left(\begin{array} { l l } { A } & { B } \\ { 洞 } & { D-C A^{-1}B} \end{array}\right) (ACBD)=(ICA−10I)(A洞BD−CA−1B)
( I 0 − C A − 1 I ) ( A B C D ) = ( A B 洞 D − B C A − 1 ) \left( \begin{array} { l l } { I } & {0 } \\ { -CA^{-1}} & { I} \end{array}\right)\left( \begin{array} { l l } { A } & { B } \\ { C } & { D} \end{array}\right) =\left(\begin{array} { l l } { A } & { B} \\ { 洞 } & { D -BCA^{-1}} \end{array}\right) (I−CA−10I)(ACBD)=(A洞BD−BCA−1)
( A B C D ) ( I 0 − D − 1 C I ) = ( A − B D − 1 C B 洞 D ) \left( \begin{array} { l l } { A } & { B } \\ { C } & { D} \end{array}\right) \left( \begin{array} { l l } { I } & {0 } \\ { -D^{-1}C} & { I} \end{array}\right)= \left(\begin{array} { l l } { A-BD^{-1}C } & {B } \\ { 洞 } & { D} \end{array}\right) (ACBD)(I−D−1C0I)=(A−BD−1C洞BD)
应用:
1.分块矩阵的行列式公式
1.1 矩阵M=【A B ;C D】 ,若A可逆
则M的行列式等于 A的行列式乘以D减去C乘以A的逆乘以B的行列式
∣
A
B
0
D
∣
=
∣
A
∣
∗
∣
D
∣
\left| \begin{array} { l l } { A } & { B } \\ { 0 } & { D} \end{array} \right|=|A|*|D|
∣∣∣∣A0BD∣∣∣∣=∣A∣∗∣D∣
∣
A
B
C
D
∣
=
∣
I
0
C
A
−
1
I
∣
∣
A
B
0
D
−
C
A
−
1
B
∣
\left| \begin{array} { l l } { A } & { B } \\ { C } & { D} \end{array}\right|= \left| \begin{array} { l l } { I } & { 0 } \\ { C A^{-1}} & { I} \end{array}\right |\left| \begin{array} { l l } { A } & { B } \\ { 0 } & { D-C A^{-1}B} \end{array}\right|
∣∣∣∣ACBD∣∣∣∣=∣∣∣∣ICA−10I∣∣∣∣∣∣∣∣A0BD−CA−1B∣∣∣∣
1.1得证
当AC=CA时:
A不可逆时,对其做一个扰动A+tE,E为单位阵,只要|t|足够小可保证A+tE可逆。用A+tE去打洞,利用行列式函数关于t的连续性,让t趋近于0即可
令 A(λ )=λ E +A. ----------矩阵计算中另一个技巧,所谓的 “摄动法”,
则 detA(λ )是λ的n 次 首一多项式,至多n 个根,得到的结果为|AD-CB|
参考
证明分块矩阵的行列式公式
Schur补与矩阵打洞,SMW求逆公式,分块矩阵与行列式(不)等式
https://zhidao.baidu.com/question/812527664260514092.html
三个行变换的基本初等矩阵:
初等矩阵相互作用还是初等矩阵
交 换 i j 两 行 ( 1 ⋱ 1 0 i i ⋯ ⋯ 1 ⋮ 1 ⋮ 0 0 0 0 0 ⋮ 0 0 1 ⋮ 1 ⋯ ⋯ 0 j j 1 ⋱ 1 ) 交换i j 两行\left( \begin{array} { l l } { 1 } & { }& { }& { } \\ & { \ddots }\\ { }&& { 1 } & { } \\ { }&& { } & { 0ii}& { \cdots} & { } & { \cdots} & { 1} & { } \\ { }&& { } & { \vdots}& { 1} & { } & { } & { \vdots} & { } \\ { }&& { } & { 0}& { 0} & { 0} & { 0} & { 0} & { } \\ { }&& { } & { \vdots}& { 0} & { 0} & { 1} & {\vdots} & { } \\ { }&& { } & { 1}& { \cdots} & {} & { \cdots} & {0jj} & { } \\ { }&& { } & { }& { } & {} & { } & {} & { 1} \\ {} & { }&& { } & { }& { } & {} & { } & {} & { \ddots } \\ {} & {} & { }&& { } & { }& { } & {} & { } & {} & { 1} \\ \end{array}\right) 交换ij两行⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛1⋱10ii⋮0⋮1⋯100⋯00⋯01⋯1⋮0⋮0jj1⋱1⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞
一 行 乘 k 加 到 另 一 行 ( 1 ⋱ 1 1 ⋯ ⋯ k 1 ⋮ 1 1 ⋮ 1 1 ⋱ 1 ) 一行乘k加到另一行 \left( \begin{array} { l l } { 1 } & { }& { }& { } \\ & { \ddots }\\ { }&& { 1 } & { } \\ { }&& { } & { 1}& { \cdots} & { } & { \cdots} & { k} & { } \\ { }&& { } & {}& {1 } & { } & { } & { \vdots} & { } \\ { }&& { } & { }& { } & { 1} & { } & { } & { } \\ { }&& { } & { }& { } & { } & { 1} & {\vdots} & { } \\ { }&& { } & { }& { } & {} & { } & {1} & { } \\ { }&& { } & { }& { } & {} & { } & {} & { 1} \\ {} & { }&& { } & { }& { } & {} & { } & {} & { \ddots } \\ {} & {} & { }&& { } & { }& { } & {} & { } & {} & { 1} \\ \end{array}\right) 一行乘k加到另一行⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛1⋱11⋯11⋯1k⋮⋮11⋱1⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞
一 行 乘 k ( 1 ⋱ 1 1 k 1 ⋱ 1 ) 一行乘k \left( \begin{array} { l l } { 1 } & { }& { }& { } \\ & { \ddots }\\ { }&& { 1 } & { } \\ { }&& { } & { 1}& { } & { } & { } & { } & { } \\ { }&& { } & {}& {k } & { } & { } & { } & { } \\ & { } & {} & { } & {} & { 1} \\ & { }& { } & {} & { } & {} & { \ddots } \\ { }&& { } & { }& { } & {} & { } & {} & { 1} \\ \end{array}\right) 一行乘k⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛1⋱11k1⋱1⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞