伽罗瓦理论笔记暂记1

伽罗瓦理论笔记暂记1
伽罗瓦理论笔记暂记2
方程根式解笔记3
方程根式解笔记4

方程f(x)=0在F上的群

每一个多项式方程f(x)=0,都可以看作某个系数域F上的多项式方程,F是复数域C的子域。
n次方程f(x)=0在复数域C中有n个根{a1,……,an},不妨设这里没有重根。
这个根集到自身的置换最多有n!个,他们构成一个群,同构于Sn.
但是这些根往往不是独立的,或者说根之间是有代数关系的。
这n!个置换中保持根之间在F中的全部关系(粗略地说,这里的“关系”,是指系数在F中的上述n个根的多项式等式关系)都不变的置换的个数一般少于n!个,他们又构成上述那个群的一个子群,同构于Sn的一个子群,称为“方程f(x)=0在F上的群”.

每一个多项式方程f(x)=0,都可以看作某个系数域F上的多项式方程,F是复数域C的子域。
n次方程f(x)=0在复数域C中有n个根{a1,……,an},不妨设这里没有重根。
这个根集到自身的置换最多有n!个,他们构成一个群,同构于Sn.
但是这些根往往不是独立的,或者说根之间是有代数关系的。
这n!个置换中保持根之间在F中的全部关系(粗略地说,这里的“关系”,是指系数在F中的上述n个根的多项式等式关系)都不变的置换的个数一般少于n!个,他们又构成上述那个群的一个子群,同构于Sn的一个子群,称为“方程f(x)=0在F上的群”.

f(x)=0在F上,f(x)在F上有分裂域K,这个群就是: Gal(K/F) K的F自同构组成的群(在F上恒等)

一个特殊情况:
K=F ,也就是f(x)的根都在F上(比如有理系数的多项式的根全都是有理数) Gal(K/F)=identical

F<E<K Gal(K/F)=>Gal(K/E)

f(x)=0既可以看作F上的多项式方程,又可以看作是F的某个扩域F1上的多项式方程,F1仍是C的子域。当F扩大成F1时,根之间在方程系数域中的全部关系也就增加了,保持这些全部关系都不变的置换就减少了,从而f(x)=0在系数域上的群就缩小了。当这种群缩成幺群时。即只有恒等置换才能保持根之间在F中的全部关系都不变,就表明方程的所有根都属于系数域了。
f(x)=0既可以看作F上的多项式方程,又可以看作是F的某个扩域F1上的多项式方程,F1仍是C的子域。当F扩大成F1时,根之间在方程系数域中的全部关系也就增加了,保持这些全部关系都不变的置换就减少了,从而f(x)=0在系数域上的群就缩小了。当这种群缩成幺群时。即只有恒等置换才能保持根之间在F中的全部关系都不变,就表明方程的所有根都属于系数域了。

方程的系数域的扩大的过程可以多次重复进行,如果每次扩大时添加的都是原系数域的根式,则扩域中的元素都能用原域中的元素的加减乘除和根式表示出,如果这种扩大系数域的方式能使方程f(x)在扩域上的群称为幺群,那么方程f(x)=0的根就一定可以用原来系数域中的元素的加减乘除和根式表示出,方程f(x)=0也就有了“根式解’.这就是伽罗瓦探寻”方程可用根式解“的思路。
方程的系数域的扩大的过程可以多次重复进行,如果每次扩大时添加的都是原系数域的根式,则扩域中的元素都能用原域中的元素的加减乘除和根式表示出,如果这种扩大系数域的方式能使方程f(x)在扩域上的群称为幺群,那么方程f(x)=0的根就一定可以用原来系数域中的元素的加减乘除和根式表示出,方程f(x)=0也就有了“根式解’.这就是伽罗瓦探寻”方程可用根式解“的思路。

也就是说每次用根式扩张的方法能不能最后将群变为恒等映射。

例子: x 4 + b x 2 + c = 0 x^4+bx^2+c=0 x4+bx2+c=0
这里b,c是独立的(或者称在Q上是代数无关的,即b,c不能作为Q上任意2元多项式的根)。该方程的系数域可以看作是Q(b,c),即有理数域添加b,c而成的域,记为F.
这个四次方程有四个根:
a 1 = x − b + b 2 − 4 c 2 a 2 = − x − b + b 2 − 4 c 2 a1=\sqrt { x\frac{-b+\sqrt { b^2-4c}}{2}} \qquad a2=-\sqrt { x\frac{-b+\sqrt { b^2-4c}}{2}} a1=x2b+b24c a2=x2b+b24c
a 3 = x − b − b 2 − 4 c 2 a 4 = − x − b − b 2 − 4 c 2 a3=\sqrt { x\frac{-b-\sqrt { b^2-4c}}{2}} \qquad a4=-\sqrt { x\frac{-b-\sqrt { b^2-4c}}{2}} a3=x2bb24c a4=x2bb24c
于是:
a 1 + a 2 = 0 a 3 + a 4 = 0 a1+a2=0 \qquad a3+a4=0 a1+a2=0a3+a4=0
这是根在F中的两个关系。
F不用扩充自动就有两个关系。
如果考虑根集的所有置换共有4!个。
作 用 σ 保 持 这 两 个 关 系 不 变 则 有 σ ( a 1 ) + σ ( a 2 ) = 0 , σ ( a 3 ) + σ ( a 4 ) = 0 置 换 就 只 有 8 个 ( 恒 等 , a 1 , a 2 可 互 换 , a 3 , a 4 可 互 换 , a 1 , a 3 互 换 , 同 时 a 2 , a 4 互 换 , 变 换 ( 4 , 3 , 1 , 2 ) 结 果 为 【 3 , 4 , 2 , 1 】 , 结 果 为 【 4 , 3 , 1 , 2 】 的 , 结 果 为 【 4 , 3 , 2 , 1 】 的 ) 作用\sigma保持这两个关系不变则有\sigma(a1)+\sigma(a2)=0,\sigma(a3)+\sigma(a4)=0\\置换就只有8个\\(恒等,a1,a2可互换,a3,a4可互换,a1,a3互换,同时a2,a4互换, \\变换(4,3,1,2)结果为【3,4,2,1】,结果为【4,3,1,2】的,结果为【4,3,2,1】的) σσ(a1)+σ(a2)=0,σ(a3)+σ(a4)=08a1,a2a3,a4,a1a3a2,a44312342143124321
所以根没有在F中,因为保持关系不变的置换有8个。
用伽罗瓦理论来说就是分裂域对域F的次数是8
可以证明 ,这8个置换,也是24个置换中使根a1,a2,a3,a4之间在F中全部关系都不变的仅有的置换。这8个置换构成的集合是有结构的。他们关于置换的乘法成群。称为该方程在F上的群,它同构于S4的一个子群。

构成的这个群就是f(x)=0在F上的群,实际上就是Gal(K/F),这时K!=F,也就是没有将根全部找出来。

加元素:

我们再次注意到
a 1 2 − a 2 2 − b 2 − 4 c = 0. 它 并 不 是 根 之 间 在 F 上 的 一 个 关 系 , 因 为 b 2 − 4 c 不 是 F 中 的 元 素 。 但 如 果 把 根 式 b 2 − 4 c 添 加 到 F 中 去 , 形 成 的 扩 域 F 1 = F ( b 2 − 4 c ) , 则 a 1 2 − a 2 2 − b 2 − 4 c = 0 就 是 根 之 间 在 F 1 上 的 一 个 关 系 了 。 a1^2-a2^2-\sqrt { b^2-4c}=0.它并不是根之间在F上的一个关系,\\因为\sqrt { b^2-4c}不是F中的元素。\\但如果把根式\sqrt { b^2-4c}添加到F中去,形成的扩域F1=F(\sqrt { b^2-4c}),\\则a1^2-a2^2-\sqrt { b^2-4c}=0就是根之间在F1上的一个关系了。 a12a22b24c =0.Fb24c Fb24c FF1=F(b24c ),a12a22b24c =0F1
a 1 2 − a 2 2 − b 2 − 4 c = 0. 它 并 不 是 根 之 间 在 F 上 的 一 个 关 系 , 因 为 b 2 − 4 c 不 是 F 中 的 元 素 。 但 如 果 把 根 式 b 2 − 4 c 添 加 到 F 中 去 , 形 成 的 扩 域 F 1 = F ( b 2 − 4 c ) , 则 a 1 2 − a 2 2 − b 2 − 4 c = 0 就 是 根 之 间 在 F 1 上 的 一 个 关 系 了 。 a1^2-a2^2-\sqrt { b^2-4c}=0.它并不是根之间在F上的一个关系,\\因为\sqrt { b^2-4c}不是F中的元素。\\但如果把根式\sqrt { b^2-4c}添加到F中去,形成的扩域F1=F(\sqrt { b^2-4c}),\\则a1^2-a2^2-\sqrt { b^2-4c}=0就是根之间在F1上的一个关系了。 a12a22b24c =0.Fb24c Fb24c FF1=F(b24c ),a12a22b24c =0F1
由 于 a 1 + a 2 = 0 a 3 + a 4 = 0 导 致 a 1 2 = a 2 2 和 a 3 2 = a 4 2 , 所 以 , 上 面 的 8 个 置 换 中 的 前 4 个 使 根 之 间 在 F 1 中 的 关 系 a 1 2 − a 2 2 − b 2 − 4 c = 0 保 持 不 变 但 后 4 个 置 换 则 不 能 使 之 保 持 不 变 。 可 以 证 明 , 这 前 4 个 置 换 能 使 跟 之 间 在 F 1 中 的 全 部 关 系 保 持 不 变 , 从 而 构 成 方 程 在 F 1 上 的 群 , 它 是 这 8 个 置 换 构 成 的 群 的 子 群 。 由于a1+a2=0 \qquad a3+a4=0导致a1^2=a2^2和a3^2=a4^2,所以,\\上面的8个置换中的前4个使根之间在F1中的关系a1^2-a2^2-\sqrt { b^2-4c}=0保持不变\\但后4个置换则不能使之保持不变。 可以证明,这前4个置换能使跟之间在F1中的全部关系保持不变,从而构成方程在F1上的群,\\它是这8个置换构成的群的子群。 a1+a2=0a3+a4=0a12=a22a32=a42,84使F1a12a22b24c =04使4使F1F18
我 们 再 次 注 意 到 a 3 − a 4 − 2 − b − b 2 − 4 c 2 = 0 它 并 不 是 根 之 间 在 F 1 中 的 一 个 关 系 , 因 为 虽 然 − b − b 2 − 4 c 2 ∈ F 1 但 是 其 开 平 方 后 一 般 不 再 是 F 1 中 的 元 素 。 可 是 , 如 果 把 F 1 中 元 素 的 根 式 − b − b 2 − 4 c 2 添 加 到 F 1 中 去 , 形 成 扩 域 F 2 = F 1 ( − b − b 2 − 4 c 2 ) 则 a 3 − a 4 − 2 − b − b 2 − 4 c 2 = 0 就 是 根 之 间 在 F 2 中 的 一 个 关 系 。 这 个 关 系 只 在 前 两 个 置 换 下 保 持 不 变 , 而 在 后 六 个 置 换 下 都 不 能 保 持 不 变 , 从 而 构 成 方 程 在 F 2 上 的 群 , 它 是 上 述 4 个 置 换 构 成 的 群 的 子 群 。 我们再次注意到a3-a4-2\sqrt { \frac{-b-\sqrt {b^2-4c}}{2}}=0\\ 它并不是根之间在F1中的一个关系,因为虽然 \frac{-b-\sqrt {b^2-4c}}{2} \in F1\\ 但是其开平方后一般不再是F1中的元素。\\可是,如果把F1中元素的根式\sqrt { \frac{-b-\sqrt {b^2-4c}}{2}} 添加到F1中去,形成扩域F2=F1(\sqrt { \frac{-b-\sqrt {b^2-4c}}{2}})\\ 则 a3-a4-2\sqrt { \frac{-b-\sqrt {b^2-4c}}{2}}=0\\ 就是根之间在F2中的一个关系。这个关系只在前两个置换下保持不变,\\而在后六个置换下都不能保持不变,从而构成方程在F2上的群,它是上述4个置换构成的群的子群。 a3a422bb24c =0F12bb24c F1F1F12bb24c F1F2=F12bb24c a3a422bb24c =0F2F24
因 为 a 3 , a 4 相 差 一 个 符 号 因为a3,a4相差一个符号 a3,a4

我 们 再 次 注 意 到 a 1 − a 2 − 2 − b + b 2 − 4 c 2 = 0 它 并 不 是 根 之 间 在 F 2 中 的 一 个 关 系 , 因 为 虽 然 − b + b 2 − 4 c 2 ∈ F 1 但 是 其 开 平 方 后 一 般 不 再 是 F 1 中 的 元 素 。 可 是 , 如 果 把 F 2 中 元 素 的 根 式 − b − b 2 − 4 c 2 添 加 到 F 2 中 去 , 形 成 扩 域 F 3 = F 2 ( − b + b 2 − 4 c 2 ) 则 a 1 − a 2 − 2 − b + b 2 − 4 c 2 = 0 就 是 根 之 间 在 F 3 中 的 一 个 关 系 。 这 个 关 系 只 在 σ 1 , σ 3 两 个 置 换 下 保 持 不 变 , 但 σ 3 不 能 使 根 之 间 再 F 中 的 全 部 关 系 保 持 不 变 , 从 而 也 就 不 能 使 根 之 间 在 F 3 ( F 2 ⊂ F 3 ) 中 的 全 部 关 系 保 持 不 变 , 我们再次注意到a1-a2-2\sqrt { \frac{-b+\sqrt {b^2-4c}}{2}}=0\\ 它并不是根之间在F2中的一个关系,因为虽然 \frac{-b+\sqrt {b^2-4c}}{2} \in F1\\ 但是其开平方后一般不再是F1中的元素。\\可是,如果把F2中元素的根式\sqrt { \frac{-b-\sqrt {b^2-4c}}{2}} 添加到F2中去,形成扩域F3=F2(\sqrt { \frac{-b+\sqrt {b^2-4c}}{2}})\\ 则 a1-a2-2\sqrt { \frac{-b+\sqrt {b^2-4c}}{2}}=0\\ 就是根之间在F3中的一个关系。\\这个关系只在\sigma 1,\sigma 3 两个置换下保持不变,\\ 但\sigma 3不能使根之间再F中的全部关系保持不变,从而也就不能使根之间在F3(F2\subset F3)中的全部关系保持不变, a1a222b+b24c =0F22b+b24c F1F1F22bb24c F2F3=F22b+b24c a1a222b+b24c =0F3σ1,σ3σ3使F使F3F2F3

从 这 个 例 子 可 以 看 到 , 方 程 在 系 数 域 上 的 群 , 是 方 程 在 系 数 域 中 可 解 性 的 关 键 , 因 为 这 个 群 的 大 小 表 示 出 方 程 的 根 在 系 数 域 上 的 不 可 区 分 的 程 度 , 当 这 个 方 程 在 系 数 域 上 的 群 是 最 小 的 群 幺 群 时 , 表 明 根 在 系 数 域 上 完 全 区 分 开 , 或 者 说 , 根 就 在 系 数 域 中 。 从这个例子可以看到,方程在系数域上的群,是方程在系数域中可解性的关键,因为这个群的大小表示出方程的根在系数域上的不可区分的程度,当这个方程在系数域上的群是最小的群幺群时,表明根在系数域上完全区分开,或者说,根就在系数域中。
这个例子是个特殊的四次方程。
实际工作是在不知道方程的根的表达式的情况下进行的。
伽罗瓦说明了,在不知道根的情况下,如何能找到方程在系数域上的群,
以及通过预解式找到向系数域中添加的根式从而得到更大的系数域。
这样逐次进行,直到系数域扩大到方程在扩域上的群是幺群时,根就在扩大的系数域里了。

这些步骤中包含了大量的理论,伽罗瓦是想由此说明他的理论,而不是想把这些步骤作为解放成的一个实际方法。
下边,我们用现代的语言来简要叙述伽罗瓦的理论及其在”方程根式解“和”尺规作图“两个房买你的主要结果。
简单总结

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值