方程根式解笔记3

伽罗瓦理论笔记暂记1
伽罗瓦理论笔记暂记2
方程根式解笔记3
方程根式解笔记4

方程根式解的充要条件

直接从域的角度不容易做出来,但是从群的角度就大大降低了难度。

特征零上的域 如数域 的扩张的问题

方程的伽罗瓦群

域是对加减乘除的四则运算封闭的

设F(x)是域F上的多项式,即f(x)∈ F[x]. 为简单,f(x) 是无重根的多项式,记K是f(x)的分裂域,则Gal(K/F) 为f(x) = 0对基域F的伽罗瓦群,记为G(f(x), F).
由于K是可分多项式f(x)∈F[x] 的分裂域,所以K是F的伽罗瓦扩张,
从而可以用伽罗瓦基本定理

方程的根式解

事实上,方程的伽罗瓦群G(f(x),F)与f(x)= 0的根集上的一个置换群(Sn的子群)是同构的,在具体计算时,常常仍把方程的伽罗瓦群写成置换群,这样比较简单、方便.

根式扩张:设f(x)=0是域F上的多项式方程,向F中不断添加某元素的某次根式而形成一组扩域

F ⊂ F 1 ⊂ F 2 ⊂ … … ⊂ K ′ F\subset F1\subset F2\subset……\subset K' FF1F2K
其中K’包含f(x)的分裂域,记K是f(x)的分裂域,K是复数域的子域。因为n次方程在复数域上是可解的
如果 K ⊂ K ′ K\subset K' KK则称f(x)可根式解。

由于Fi+1是x^{ni+1}- a_{i+1}的分裂域,那么每一层只要在前一个中间域,上添加一个根式,所以,
每一层扩张也称“单根式扩张”.相应地,上述根式扩张的中间域序列也
称“单根式扩张列”,或形象地称为“根塔”,

由于,上述根塔是有限层的,所以K中任一元素可以从F中的元素出发,
经过有限步的加、减、乘、除及开各种次方而得到.现在K是f(x)的分
裂域,f(x)= 0的根都在K中,因此f(xr) = 0的根都可以从F中的元素
出发,经有限步的加、减、乘、除及开各种次方得到.这就是“方程可用
根式解"的朴素的含义,只不过现在用严格的数学语言叙述出来罢了.

方程根式解的充要条件

f(x) = 0对基域F的伽罗瓦群G(f(x), F)为可解群.

这个定理的证明,主要是运用伽罗瓦基本定理.这个定理的结论,给“方
程是否可用根式解"的问题以一个彻底的回答,即看方程的伽罗瓦群是
否为可解群,这个定理也称为“方程可用根式解的伽罗瓦准则”,
否则需要不断扩张基域看其是否是方程的分裂域,理论上分裂域存在,但实际上需要将所有的根求解出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值