伽罗瓦理论笔记暂记1
伽罗瓦理论笔记暂记2
方程根式解笔记3
方程根式解笔记4
对于一个群判断是否为可解群并不是很简单
但是对于文字系数的一般的群
文字系数的5次和5次以上的方程不能用根式解
定理次数≥5 的文字系数的多项式方程不能用根式解.
所谓文字系数,就是方程所有系数是独立的( 或称代数无关的)
从而n次方程的n个根也是独立的,于是根之间在方程系数域中没有任何代数
关系,前面谈到的“保持根之间在方程系数域中的全部关系”的条件现
在相当于没有条件,因此,n个根的所有n!个置换就构成了方程在系数
域上的群,它同构于Sn.或者用现在的语言叙述为,文字系数的n次方程
对基域的伽罗瓦群同构于Sn.
因为n≥5时An不是可解群(这是An不是单群);
而An是Sn的子群,如果Sn是可解群,则
因可解群的子群都是可解群,就推出An是可解群,这是矛盾.这样就说
明了n≥5时Sn不是可解群,
这个定理也表明,5次和5次以上的方程,没有通常意义下的“求根公
式"
确有数字系数的5次及5次以上的方程不可用根式解.例如,有理数域上的5次方程
x^5+20x+16= 0
就不可用根式解,因为它的伽罗瓦群是S5,不是可解群