求和+差分+Abel变换
狄 利 克 雷 判 别 法 : 若 数 列 a n 单 调 且 趋 于 0 , S b k 有 界 , 则 级 数 > a 。 b 。 收 敛 狄利克雷判别法:若数列{an }单调且趋于0,S b_{k}有界,则级数>a。b。收敛 狄利克雷判别法:若数列an单调且趋于0,Sbk有界,则级数>a。b。收敛
∑ n = 1 N a n b n = ∑ n = 1 N a n ( S n − S n − 1 ) \sum_{n=1}^{ N}a_{n}b_{n}=\sum_{n=1}^{ N} a_{n}(S_{n}-S_{n-1}) n=1∑Nanbn=n=1∑Nan(Sn−Sn−1)
a N S N − a N S N − 1 a N − 1 S N − 1 − a N − 1 S N − 2 a N − 2 S N − 2 − a N − 2 S N − 3 ⋮ ⋮ a 3 S 3 − a 3 S 2 a 2 S 2 − a 2 S 1 a 1 S 1 − a 1 S 0 a_{N}S_{N}-a_{N}S_{N-1} \\ a_{N-1}S_{N-1}-a_{N-1}S_{N-2} \\ a_{N-2}S_{N-2}-a_{N-2}S_{N-3} \\ \vdots \qquad \qquad \vdots \\a_{3}S_{3}-a_{3}S_{2} \\ a_{2}S_{2}-a_{2}S_{1} \\ a_{1}S_{1}-a_{1}S_{0} aNSN−aNSN−1aN−1SN−1−aN−1SN−2aN−2SN−2−aN−2SN−3⋮⋮a3S3−a3S2a2S2−a2S1a1S1−a1S0
提
出
首
尾
a
N
S
N
−
−
a
1
S
0
提出首尾 a_{N}S_{N}--a_{1}S_{0}
提出首尾aNSN−−a1S0
剩
下
∑
n
=
2
N
s
n
−
1
(
a
n
−
a
n
−
1
)
剩下\sum_{n=2}^{ N} s_{n-1}(a_{n}-a_{n-1})
剩下n=2∑Nsn−1(an−an−1)
1.提出求和部分,使得差部分抵消,所以要求和部分有界
2.由此对a_n部分使用三角不等式放缩,要求a_n单调
加 上 绝 对 值 考 虑 ∣ ∑ n = 1 N a n b n ∣ = ∣ ∑ n = 2 N s n − 1 ( a n − a n − 1 ) ∣ + ∣ a N S N − − a 1 S 0 ∣ = ∑ n = 2 N ∣ s n − 1 ( a n − a n − 1 ) ∣ + ∣ a N S N − − a 1 S 0 ∣ 单 调 后 ( a n − a n − 1 ) 都 是 同 号 的 , 能 去 掉 绝 对 值 进 行 “ 消 去 ” 运 算 ≤ ∑ n = 2 N M ∣ ( a n − a n − 1 ) ∣ + ∣ a N S N − − a 1 S 0 ∣ = M ∣ ( a n − a 1 ) ∣ + ∣ a N S N − − a 1 S 0 ∣ 加上绝对值考虑|\sum_{n=1}^{ N}a_{n}b_{n}|=|\sum_{n=2}^{ N} s_{n-1}(a_{n}-a_{n-1})|+|a_{N}S_{N}--a_{1}S_{0}|\\=\sum_{n=2}^{ N}| s_{n-1}(a_{n}-a_{n-1})|+|a_{N}S_{N}--a_{1}S_{0}|\\ 单调后(a_{n}-a_{n-1})都是同号的,能去掉绝对值进行“消去”运算\\ \leq\sum_{n=2}^{ N}M|(a_{n}-a_{n-1})|+|a_{N}S_{N}--a_{1}S_{0}|= M|(a_{n}-a_{1})|+|a_{N}S_{N}--a_{1}S_{0}| 加上绝对值考虑∣n=1∑Nanbn∣=∣n=2∑Nsn−1(an−an−1)∣+∣aNSN−−a1S0∣=n=2∑N∣sn−1(an−an−1)∣+∣aNSN−−a1S0∣单调后(an−an−1)都是同号的,能去掉绝对值进行“消去”运算≤n=2∑NM∣(an−an−1)∣+∣aNSN−−a1S0∣=M∣(an−a1)∣+∣aNSN−−a1S0∣
3.要求收敛则余项部分应为零(柯西收敛准则)
∑
n
=
1
N
a
n
b
n
≈
0
,
,
由
上
只
需
∣
∑
n
=
1
N
a
n
b
n
∣
<
ε
\sum_{n=1}^{ N}a_{n}b_{n} \approx 0 ,,由上只需|\sum_{n=1}^{ N}a_{n}b_{n}| < ε
n=1∑Nanbn≈0,,由上只需∣n=1∑Nanbn∣<ε
"
最
后
N
项
"
有
相
同
的
形
式
:
M
∣
(
a
n
−
a
1
)
∣
+
∣
a
N
S
N
∣
"最后N项"有相同的形式:M|(a_{n}-a_{1})|+|a_{N}S_{N}|
"最后N项"有相同的形式:M∣(an−a1)∣+∣aNSN∣
3.1. sn收敛的话,M(部分和数列的界)=0,可提供和部分的零
3.2 an收敛到零的话,可提供差结果中的零
综上所述
阿贝尔判别法
若 数 列 { a n } 单 调 有 界 , 级 数 ∑ n = 1 ∞ b n 收 敛 , 则 数 项 级 数 ∑ n = 1 ∞ a n b n 收 敛 若数列\{a_n \}单调有界,级数\sum_{n=1}^{\infty}b_n收敛,则数项级数\sum_{n=1}^{\infty}a_nb_n收敛 若数列{an}单调有界,级数n=1∑∞bn收敛,则数项级数n=1∑∞anbn收敛
迪利克雷判别法
若 数 列 { a n } 单 调 且 趋 向 于 0 , 级 数 ∑ n = 1 n b n 有 界 , 则 数 项 级 数 ∑ n = 1 ∞ a n b n 收 敛 若数列\{a_n \}单调且趋向于0,级数\sum_{n=1}^{n}b_n有界,则数项级数\sum_{n=1}^{\infty}a_nb_n收敛 若数列{an}单调且趋向于0,级数n=1∑nbn有界,则数项级数n=1∑∞anbn收敛