数列递推形式的极限&正定,负定,不定与形式导数

数列递推形式的极限&正定,负定,不定与形式导数

数列的递推形式的极限:递推函数单调增,数列单调

A = ( a b c d ) A=\left( \begin{array} { l l } { a } & { b } \\ { c } & { d} \end{array}\right) A=(acbd)
二 次 型 ( x , y ) ( a b c d ) ( x y ) 的 “ 形 式 导 数 ” ( a b c d ) ( x y ) 二次型 \quad (x,y)\left( \begin{array} { l l } { a } & { b } \\ { c } & { d} \end{array}\right)\left( \begin{array} { l l } {x} \\ { y } \end{array}\right)\\的“形式导数”\left( \begin{array} { l l } { a } & { b } \\ { c } & { d} \end{array}\right)\left( \begin{array} { l l } {x} \\ { y } \end{array}\right) (x,y)(acbd)(xy)(acbd)(xy)

对于二阶的二次型下列命题:

a.如果detA>0且a>0,则Q是正定的.
b.如果detA>0且a<0,则Q是负定的.
c.如果detA<0,则Q是不定的.

证明:如果B是mxn矩阵,那么B’B是半正定的;如果B是nxn可逆矩阵,那么BTB是正定的.

二元函数的泰勒展开&黑塞矩阵与极值

在 一 元 函 数 的 泰 勒 展 开 中 , 拟 合 函 数 的 导 数 值 与 f ( x ) 在 x 0 处 的 导 数 一 致 在一元函数的泰勒展开中,拟合函数的导数值与f(x)在x_0处的导数一致 f(x)x0
多 元 函 数 , 也 有 同 样 的 性 质 f x 0 x 0 ( x − x 0 ) 2 + f x 0 y 0 ( x − x 0 ) ( y − y 0 ) + f y 0 x 0 ( y − y 0 ) ( x − x 0 ) + f y 0 y 0 ( y − y 0 ) 2 第 二 项 1 2 ! ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) 2 f ( x 0 , y 0 ) ( x , y ) ( f x 0 x 0 f x 0 y 0 f y 0 x 0 f y 0 y 0 ) ( x y ) 多元函数,也有同样的性质\\f_{x_0x_0}(x-x_0)^2+f_{x_0y_0}(x-x_0)(y-y_0)+f_{y_0x_0}(y-y_0)(x-x_0)+f_{y_0y_0}(y-y_0)^2\\ 第二项\frac{1}{2!}(Δx \frac{\partial}{\partial x}+Δy \frac{\partial}{\partial y})^2f(x_0,y_0)\\ (x,y)\left( \begin{array} { l l } { f_{x_0x_0} } & { f_{x_0y_0} } \\ { f_{y_0x_0} } & { f_{y_0y_0}} \end{array}\right)\left( \begin{array} { l l } {x} \\ { y } \end{array}\right) fx0x0(xx0)2+fx0y0(xx0)(yy0)+fy0x0(yy0)(xx0)+fy0y0(yy0)22!1(Δxx+Δyy)2f(x0,y0)(x,y)(fx0x0fy0x0fx0y0fy0y0)(xy)

极小值的必要条件:
J = 0 , 黑 塞 矩 阵 半 正 定 J=0,黑塞矩阵半正定 J=0,

极小值的冲分条件:
J = 0 , 黑 塞 矩 阵 正 定 J=0,黑塞矩阵正定 J=0,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值