代数系统习题

《代数系统》习题

1. 设 Z 为 整 数 集 , A 为 集 合 , A 的 幂 集 为 P ( A ) , + − / 为 数 的 加 减 除 运 算 , ∩ 为 集 合 的 交 运 算 , 下 列 系 统 中 是 代 数 系 统 的 有 ( D ) A < Z , + , / > B < Z , / > C < Z , − , / > D < P ( A ) , ∩ > 代 数 系 统 = 非 空 集 合 + 运 算 + 封 闭 性 1.设Z为整数集,A为集合,A的幂集为P(A),+ - /为数的加减除运算,\cap 为集合的交运算,\\ 下列系统中是代数系统的有(D)\\ A<Z,+,/> B<Z,/> C<Z,-,/> D<P(A),\cap>代数系统=非空集合+运算+封闭性 1.ZAAP(A),+/(D)A<Z,+,/>B<Z,/>C<Z,,/>D<P(A),>=++


2. 在 自 然 数 集 N 上 , 下 列 哪 种 运 算 是 可 结 合 的 ? ( B ) 2.在自然数集N上,下列哪种运算是可结合的? ( B) 2.N?(B)
(A) ab=a-b(B) ab=max{a,b} © ab=a+2b (D) ab= |a-b|


3. 任 何 一 个 具 有 两 个 或 以 上 元 的 半 群 , 它 ( B ) 3.任何一个具有两个或以上元的半群,它(B) 3.B
A:不可能是群B不一定是群C一定是群D是交换群
例:二阶循环群有两个元素是群也是半群但是,全体偶数构成的集合2Z,对普通数的乘法构成半群,但不是幺半群,更不是群。


4. 设 A = { 2 , 4 , 6 } , A 上 的 二 元 运 算 ∗ : a ∗ b = m a x { a , b } , 则 在 < A , ∗ > 中 , 单 位 元 是 ( 2 ) , 零 元 是 ( 6 ) 4.设A=\{ 2,4,6 \},A上的二元运算*:a*b=max\{ a,b \},则在<A,*>中,单位元是(2),零元是(6) 4.A={246}A:ab=max{a,b},<A,>,(2),6


5. 设 < G , ∗ > 是 一 个 群 , 则 a , b , x ∈ G , a ∗ x = b . 则 x = ( a − 1 ∗ b ) , 若 a ∗ x = a ∗ b , 则 x = ( b ) 5.设<G,*>是一个群,则a,b,x\in G,a*x=b.则x=(a^{-1}*b),若a*x=a*b,则x=(b) 5.<G,>a,b,xG,ax=b.x=(a1b)ax=ab,x=(b)
考察群的性质,即群满足消去率


6. 设 a 是 12 阶 群 的 生 成 元 , 则 a 2 是 ( 6 ) 阶 元 素 , a 3 是 ( 4 ) 阶 元 素 , a − 1 的 阶 为 ( 12 ) 6.设a是12阶群的生成元,则a^2是(6)阶元素,a^3是(4)阶元素,a^{-1}的阶为(12) 6.a12a26a34,a112
x^n=e,n称为群元素的阶,元素的阶等同元素的逆的阶


5. 代 数 系 统 < G , ∗ > 是 一 个 群 , 则 G 的 等 幕 元 是 ( 单 位 元 ) 。 注 : 等 幂 元 与 幂 等 元 是 一 个 意 思 5.代数系统<G, *>是一个群,则G的等幕元是( 单位元)。注:等幂元与幂等元是一个意思 5.<G,>G()

由 a 2 = a , 用 归 纳 法 可 证 a n = a ∗ a ( n − 1 ) = a ∗ a = a 反 之 若 a ′ n = a 对 一 切 N 成 立 , 则 对 n = 2 也 成 立 , 所 以 幂 等 元 一 定 是 等 幕 元 , 并 且 在 群 < G , ∗ > 中 , 除 幺 元 即 单 位 元 e 外 不 可 能 有 任 何 别 的 幂 等 元 ) 由a^2=a,用归纳法可证a^n=a*a(n-1)=a*a=a\\ 反之若a'n=a对一切N成立,则对n=2也成立,所以幂等元一定是等幕元,\\ 并且在群<G,*>中,除幺元即单位元e外不可能有任何别的幂等元) a2=a,an=aa(n1)=aa=aan=aNn=2<G,>e)

6. 群 < G , ∗ > 的 等 幕 元 是 ( 单 位 元 ) , 有 ( 1 ) 个 。 6.群<G, *>的等幕元是(单位元),有( 1)个。 6.<G,>()(1)
答:单位元,1 (在群<G,*>中 ,除幺元印单位元e外不可能有任何别的幂
等元)
7. 设 < s , ∗ > 是 群 ; 则 那 么 s 中 除 ( 单 位 元 ) 外 , 不 可 能 有 别 的 幂 等 元 , 如 果 群 中 有 零 元 , ∣ S ∣ = ( 1 ) 7.设<s ,*>是群;则那么s中除(单位元)外,不可能有别的幂等元,如果群中有零元,|S|=(1) 7.<s,>;s()S=(1)


8. 素 数 阶 群 一 定 是 ( 循 环 群 ) 群 , 它 的 生 成 元 是 ( 任 一 非 单 位 元 ) 。 8.素数阶群一定是( 循环群 )群, 它的生成元是(任一非单位元)。 8.()()
(证明如下:任一元素的阶整除群的阶。现在群的阶是素
数p,所以元素的阶要么是1要么是p.G中只有一个单位元,其它元素的阶都不等于1,
所以都是p。任取一个非单位元,它的阶等于p,所以它生成的G的循环子群的阶也是
p,从而等于整个群G.所以G等于它的任一 非单位元生成的循环群)

一个有限非交换群所包含的元素个数至少是6个
素数阶群
素数阶群是循环群(循环群是abel群)


离散题:给一任意群,求其所有子群的算法。添加链接描述

9.求循环群的生成元和子群


11. 求 循 环 群 C 1 2 = { e , a , a 2 , … … , a 11 } 中 H = e , a 4 , a 8 的 所 有 右 陪 集 11.求循环群C_12=\{ e,a,a^2,……,a^{11}\}中H={e,a^4,a^8}的所有右陪集 11.C12={e,a,a2,a11}H=e,a4,a8
因 为 ∣ C 12 ∣ = 12 , ∣ H ∣ = 3 , 所 以 H 的 不 同 的 右 陪 集 有 4 个 : H , { a , a 5 , a 9 } , { a 2 , a 6 , a 1 0 } , { a 3 , a 7 , a 1 1 } 因为|C_{12}|=12,|H|=3,所以H的不同的右陪集有4个:\\ H,\{ a,a^5,a^9 \},\{ a^2,a^6,a^10 \},\{ a^3,a^7,a^11 \} C12=12,H=3,H4H,{aa5,a9},{a2a6,a10},{a3a7,a11}


12. I 上 的 二 元 运 算 定 义 为 : ∀ a , b ∈ I a ∗ b = a + b − 2 。 试 问 < I , ∗ > 是 循 环 群 吗 ? 12.I上的二元运算定义为: \forall a,b\in I a*b=a+b-2。试问<I, *>是循环群吗? 12.I:a,bIab=a+b2<I,>?
解:
< I , ∗ > 是 循 环 群 。 因 为 < I , ∗ > 是 无 限 阶 的 循 环 群 , 则 它 只 有 两 个 生 成 元 。 1 和 3 是 它 的 两 个 生 成 元 。 因 为 a n = n a − 2 ( n − 1 ) , 故 1 n = 2 − n 。 从 而 对 任 一 个 k , k = 2 − ( 2 − k ) = 1 2 − k , 故 1 是 的 生 成 元 。 又 因 为 1 和 3 关 于 ∗ 互 为 逆 元 , 故 3 也 是 < I , ∗ > 的 生 成 元 。 <I, *>是循环群。因为<I, *>是无限阶的循环群,则它只有两个生成元。\\ 1和3是它的两个生成元。因为a^n=na-2(n-1),故1^n=2-n。 \\ 从而对任一个k,k=2-(2- k)=1^{2-k},故1是的生成元。\\ 又因为1和3关于*互为逆元,故3也是<I, *>的生成元。 <I,><I,>13an=na2(n1)1n=2nk,k=2(2k)=12k,113,3<I,>


设 n 是正整数, sn 是 n 的正因子的集合. d 为整除关系,问偏序集是否构成?
13. S 110 = { 1 , 2 , 5 , 10 , 11 , 22 , 55 , 110 } , g c d 表 示 求 最 大 公 约 数 的 运 算 , l c m 表 示 求 最 小 公 倍 数 的 运 算 问 ( S 110 , g c d , l c m ) 是 否 构 成 布 尔 代 数 ? 为 什 么 ? 首 先 : 布 尔 代 数 对 应 的 格 是 有 补 分 配 格 第 一 S 110 是 格 其 次 验 证 分 配 性 : g c d ( x , l c m ( y , z ) ) = l c m ( g c d ( x , y ) , g c d ( x , z ) ) 两 个 等 式 互 为 充 要 条 件 , 只 证 一 个 验 证 有 补 格 : 最 小 元 1 , 最 大 元 110 1 − 110 , 2 − 55 , 5 − 22 , 10 − 11 互 为 补 元 13.S_{110}=\{ 1,2,5,10,11,22,55,110 \},gcd表示求最大公约数的运算,lcm表示求最小公倍数的运算\\ 问(S_{110},gcd,lcm)是否构成布尔代数?为什么?\\ 首先:布尔代数对应的格是有补分配格\\ 第一S_{110}是格\\ 其次验证分配性:gcd(x,lcm(y,z))=lcm(gcd(x,y),gcd(x,z))两个等式互为充要条件,只证一个\\ 验证有补格:最小元1,最大元110\\ 1-110,2-55,5-22,10-11互为补元 13.S110={1,2,5,10,11,22,55,110}gcdlcmS110gcd,lcmS110gcd(x,lcm(y,z))=lcm(gcd(x,y),gcd(x,z))11101110,255,522,1011

14. 设 A 为 集 合 , P ( A ) 为 A 的 幂 集 , 则 < P ( A ) , s > 是 格 , 若 x y ∈ P ( A ) . 则 x , y 最 大 下 界 是 x ∩ y 最 小 上 界 是 x ∪ y 14.设A为集合,P(A)为A的幂集,则<P(A),s >是格,若xy∈P(A).则x,y最大下界是x\cap y 最小上界是x\cup y 14.A,P(A)A,<P(A),s>xyP(A).x,yxyxy

在这里插入图片描述
第一个和第二个是同一个,不封闭,只是画法的位置稍有不同
第三个是有下2,3有下界,但是没有下确界,即 4, 5,6中4,5 没有最大值

------------------------------------------------------------------------------------------

一些知识点:

代数系统=非空集合+运算+封闭性
半群=二元运算,封闭,结合律
幺半群(独异点)=半群+幺元
群=半群+有单位元、有逆元

消去率[左消去率(运算左边相同的元素可以消去,右消去率同理)]
半群与群:如果一个有限半群满足左右消去律则它是群。

单位元(ax=x)与零元(ax=a)
在这里插入图片描述
其他:
半群是群的推广。群自然是半群;反之显然未必。半群也是环的推广。环在只考虑它的乘法运算的时候是一个半群,称为环的乘半群;但任何一个带零半群却未必是某个环的乘半群。半群代数理论的系统研究始于20世纪50年代(虽然,这方面的工作可追溯到1904年苏士凯维奇(Suschkwitz,A.K.)关于有限半群的论文)。在数学内部和外部的巨大推动下,半群理论已成为代数学的一个公认的分支学科,并早已以其特有的方法独立于群论和环论之外。在20世纪60年代,苏联和美国率先出版了两本专著,利雅平(Ляпин,E.C.)的《半群》和克利福德(Clifford,A.H.)与普雷斯顿(Preston,G.B.)的两卷《半群代数理论》,这对半群代数理论的发展,在国际上起了巨大的推动作用。由德国斯普林格出版社出版的《半群论坛》更是有关半群理论的一个重要的国际性专门刊物.许多数学家在世界各地开展半群理论的研究和各层次高级人才的培养(直到博士后)。半群代数理论是半群理论中最基本、最活跃、也最富成果的一部分。此外,尚有半群的分析、拓扑和序理论

在数学中,群表示一个拥有满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构,包括阿贝尔群、同态和共轭类。

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
戴建生编著的这本《机构学与机器人学的几何基础与旋量代数》起始于直线几何与线性代数,自然过渡到旋量代数与有限位移旋量,紧密联系李群、李代数、对偶数、Hamilton四数、Clifford对偶四数等现代数学基础,首次全面、深入地阐述旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四代数以及有限位移旋量与李群之间的关联理论,展现出旋量理论与经典数学以及现代数学的内在关联,总结提炼出许多论证严密、意义明确的引理、定理与推论,由此阐述第一篇“几何基础、旋量代数与李群、李代数”,给出机构学与机器人学的几何基础与数学理论。 在第二篇“旋量系理论及机构约束与自由运动”中,运用集合论与线性代数等经典数学推导并揭示旋量系、旋量多重集及其阶数与基数的本质内涵,提出并阐述旋量系关联关系理论、零空间构造理论、旋量系分解理论及旋量系对偶理论。通过演绎旋量系这四大基本理论在过约束机构、抓持与并联机构约束分析、机构活动度等机构学与机器人学基础理论问题中的推理与应用,提出并系统地建立了完整的旋量系理论,进而奠定机构与机器人约束与自由运动的理论基础。 在第三篇“旋量代数与几何基础的机构学与机器人学应用”中,运用旋量代数与旋量系理论研究Sarrus机构、Hoberman机构、Schatz机构、Watt机构等经典机构以及变胞并联机构、闭环支链并联机构等新型机构及其在机器人中的应用,提出并联机构四大基本旋量系、活动度扩展准则、抓持扩展矩阵、弹性系数融合矩阵、多指灵巧手“变胞活动手掌”等能够解决机构学与机器人学中实际问题的一系列新概念与新理论,完整地演绎旋量代数与旋量系理论在机构学与机器人学中的应用。 本书全面系统地阐述旋量代数及其几何基础,演绎其推理运算。该书层次清晰,推理严谨,循序渐进,引人入胜,含有许多准确、严密的定义、引理、定理、推论、注释、脚注、证明以及详尽的公式推导过程,适合作为旋量理论、机构学、机器人学、制造系统与自动化、精密仪器、计算机科学及图形学等相关专业的研究生教材或高年级本科生教材,也可作为相关科研人员的参考用书。
数据库系统概念课后习题PDF是一份包含数据库系统概念课程中相关习题的电子文档。该文档旨在帮助学生巩固数据库系统概念的学习,并提供额外的练习和测试,以检验他们对该课程知识的理解和掌握程度。 在数据库系统概念课程中,学生将学习数据库的定义、数据模型、数据结构、数据操作语言等基本概念和技术。为了更好地理解和运用这些概念和技术,课后习题PDF提供了一系列问题和练习,可以帮助学生深入思考所学内容,并在实践中应用这些知识。 这些习题可能涵盖以下主题:数据库设计与规范、关系模型和关系代数、SQL查询与数据操作、数据完整性与约束、数据安全与权限控制、数据备份与恢复等。通过完成这些习题,学生可以巩固他们在数据库系统概念课程中学到的理论知识,并培养他们在实际项目中解决数据库相关问题的能力。 课后习题PDF还可能包括答案或解析,以便学生可以自行检查和纠正错误。同时,学生也可以将这些习题作为复习材料,帮助他们准备课程的考试或其他评估形式。 总之,数据库系统概念课后习题PDF是一种有益的学习资源,可以帮助学生巩固并应用他们在数据库系统概念课程中学到的知识。这些习题将促使学生更好地掌握数据库系统概念,并为他们未来在相关领域的工作和学习打下坚实基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值