多视图几何 007:直接线性变换DLT

给 定 n ( ≥ 4 ) 组 2 维 对 应 点 , x i ′ = H x i 给定n(\geq 4)组2维对应点,x_i'=Hx_i n(4)2xi=Hxi

x i ′ = H x i , 则 x i ′ × H x i = 0 ⇒ A i 2 × 9 h 9 × 1 = 0 n 组 对 应 点 可 得 到 矩 阵 A 2 n × 9 对 A = U S V T , h 为 V 的 最 后 一 列 ( S 特 征 值 降 序 排 列 ) x_i'=Hx_i ,则x_i'×Hx_i=0\\ \Rightarrow {A_i}_{2×9}h_{9×1}=0 \\ n组对应点可得到矩阵A_{2n×9}\\ 对A=USV^T,h为V的最后一列(S特征值降序排列) xi=Hxi,xi×Hxi=0Ai2×9h9×1=0nA2n×9A=USVT,hV(S)

归 一 化 D L T , 计 算 机 视 觉 中 的 多 视 图 几 何 P 65 归一化DLT,计算机视觉中的多视图几何P_{65} DLT,P65

x i ′ = H x i ⇒ x i ′ × H x i = 0 归 一 化 x ˉ = T x , x ˉ ′ = T ′ x ′ 计 算 H ˉ H = T ′ − 1 H T x_i'=Hx_i \Rightarrow x_i'×Hx_i=0\\ 归一化 \bar x =Tx,\bar x' =T'x' \\ 计算\bar H\\ H=T'^{-1}HT xi=Hxixi×Hxi=0xˉ=Tx,xˉ=TxHˉH=T1HT

其 中 归 一 化 变 换 T : 1. 将 点 进 行 平 移 使 其 形 心 ( x , y 的 均 值 ) 位 于 原 点 。 2. 对 点 进 行 缩 放 使 特 征 点 到 原 点 的 距 离 为 2 3. 对 两 幅 图 进 行 独 立 的 上 述 变 换 其中归一化变换T:\\ 1.将点进行平移使其形心(x,y的均值)位于原点。\\2.对点进行缩放使特征点到原点的距离为\sqrt 2\\3.对两幅图进行独立的上述变换 T1.使x,y2.使2 3.
参考
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值