图
1
:
平
面
上
100
个
随
机
点
的
D
e
l
a
u
n
a
y
三
角
剖
分
图1:平面上 100 个随机点的 Delaunay 三角剖分
图1:平面上100个随机点的Delaunay三角剖分
D e l a u n a y 三 角 剖 分 { 最 接 近 于 规 则 化 的 的 三 角 网 三 角 形 外 接 圆 内 部 没 有 其 他 点 如 果 不 存 在 四 点 共 圆 则 唯 一 Delaunay三角剖分 \left\{\begin{array}{l}最接近于规则化的的三角网\\ 三角形外接圆内部没有其他点\\ 如果不存在四点共圆则唯一 \end{array}\right. Delaunay三角剖分⎩⎨⎧最接近于规则化的的三角网三角形外接圆内部没有其他点如果不存在四点共圆则唯一
算法步骤:
- 构造一个“大”的三角形包含所有输入点
- 选择一个点,添加顶点v时,我们将包含v的三角形一分为三
- v和包含v的三角形的每条边都能形成一个三角形
- 它们就会有一个外接圆
- 需要看离这个边最近的点,即其“对点”是否在圆中1
- 若在圆中,进行边反转操作2 下 图 中 即 将 A B 反 转 为 了 P C \tiny 下图中即将AB反转为了PC 下图中即将AB反转为了PC
参考:
wiki:Delaunay_triangulation
Delaunay三角剖分算法B站讲解视频
What is the Delaunay triangulation in
R
d
R^d
Rd?
百度百科