Delaunay triangulation algorithm德劳内三角剖分法简介

本文介绍了Delaunay三角剖分的概念,这是一种在平面上将点集通过最接近规则化的三角网进行组织的方法。其特征是每个三角形的外接圆内不含其他点,且若不存在四点共圆,则该剖分是唯一的。算法通过构造包含所有点的大三角形开始,逐步添加顶点并进行边反转操作来确保Delaunay性质。此外,还提到了判断点是否在三角形外接圆内的行列式方法。参考了维基百科、B站视频和专业文献,深入理解这一几何算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
图 1 : 平 面 上 100 个 随 机 点 的 D e l a u n a y 三 角 剖 分 图1:平面上 100 个随机点的 Delaunay 三角剖分 1100Delaunay

D e l a u n a y 三 角 剖 分 { 最 接 近 于 规 则 化 的 的 三 角 网 三 角 形 外 接 圆 内 部 没 有 其 他 点 如 果 不 存 在 四 点 共 圆 则 唯 一 Delaunay三角剖分 \left\{\begin{array}{l}最接近于规则化的的三角网\\ 三角形外接圆内部没有其他点\\ 如果不存在四点共圆则唯一 \end{array}\right. Delaunay

算法步骤:

  • 构造一个“大”的三角形包含所有输入点
  • 选择一个点,添加顶点v时,我们将包含v的三角形一分为三
  • v和包含v的三角形的每条边都能形成一个三角形
  • 它们就会有一个外接圆
  • 需要看离这个边最近的点,即其“对点”是否在圆中1
  • 若在圆中,进行边反转操作2 下 图 中 即 将 A B 反 转 为 了 P C \tiny 下图中即将AB反转为了PC ABPC

在这里插入图片描述

参考:
wiki:Delaunay_triangulation
Delaunay三角剖分算法B站讲解视频
What is the Delaunay triangulation in R d R^d Rd?
百度百科


  1. 判断点是否在三角形外接圆内:
    在这里插入图片描述
    这个方法和求积仪-求积仪中用行列式判断位置一样。 ↩︎

  2. 在这里插入图片描述 ↩︎

### 德劳内三角剖分的概念 德劳内三角剖分Delaunay Triangulation)是一种特殊的三角剖分方式,在计算几何中有广泛应用。其核心特性在于最大化最小角,从而避免狭长三角形的产生[^1]。具体来说,对于一组离散点集 \( P \),如果某个三角剖分满足任意一个三角形的外接圆不包含其他任何点,则该三角剖分德劳内三角剖分。 #### 数学定义 给定点集 \( P = \{p_1, p_2, ..., p_n\} \),德劳内三角剖分可以形式化描述如下: 设 \( T \) 是点集 \( P \) 的一种三角剖分方案,\( C(t_i) \) 表示三角形 \( t_i \in T \) 的外接圆。则 \( T \) 被称为德劳内三角剖分当且仅当对于所有的 \( t_i \in T \),有 \( C(t_i) \cap (P - V(t_i)) = \emptyset \)[^3],其中 \( V(t_i) \) 表示构成 \( t_i \) 边界的顶点集合。 --- ### 实现方 德劳内三角剖分可以通过多种算实现,以下是几种常见的方: #### 1. 增量 增量通过逐步向现有三角剖分中插入新点来构建完整的德劳内三角剖分。每次插入操作会重新调整受影响区域内的三角形结构以保持德劳内外接圆性质[^2]。 伪代码如下: ```python def delaunay_incremental(points): triangles = [] # 初始化第一个三角形 initial_triangle = create_initial_triangulation(points[:3]) triangles.append(initial_triangle) for point in points[3:]: affected_triangles = find_affected_triangles(triangles, point) # 移除受破坏的三角形并创建新的合三角形 new_triangles = retriangulate(affected_triangles, point) triangles.extend(new_triangles) return triangles ``` #### 2. 分治 分治将整个点集分成两部分分别进行三角剖分,之后合并两个子问题的结果形成最终解。这种方的时间复杂度通常为 \( O(n \log n) \)。 #### 3. Bowyer-Watson 算 Bowyer-Watson 算基于增量策略,但在每一步都会移除所有违反德劳内外接圆条件的边,并替换为新的合边。此算简单易懂,适合初学者学习。 --- ### 应用案例 德劳内三角剖分在多个领域具有重要应用价值,包括但不限于以下方面: - **地形建模**:利用德劳内三角剖分生成高度图或表面模型。 - **网络设计**:如欧几里得最小生成树(EMST)、相对邻域图(RNG),以及最近邻居查询等问题均可借助德劳内三角剖分解决[^3]。 - **计算机图形学**:用于网格划分、纹理映射等领域。 - **有限元分析**:提供高质量单元格分布支持物理仿真过程中的数值求解。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值