【电路笔记 PCB】桥式测量电路:惠斯通电桥+文氏电桥+麦克斯韦电桥(测量未知电阻、电容、电感的值)

Wheatstone Bridge

  • 惠斯通电桥(Wheatstone Bridge)是一种测量未知电阻或比较两个电阻大小的电路,由四个电阻组成,通常用于精确测量电阻、传感器信号处理以及电路校准,力传感器示例

基本结构

  • 电桥的连接形式是一个四边形,两对电阻分别串联,形成两个分压电路。检测器连接在两条对角线之间。
Layer 1 A R2 R4 R3 R1 A B

电阻测量公式推导

  • 当桥路平衡时,检测器两端的电压差为 0,此时满足以下关系:

R 1 R 3 = R 2 R x \frac{R_1}{R_3} = \frac{R_2}{R_x} R3R1=RxR2

  • 假设电源电压为 V V V,电桥中点的电位为:

    • A 点电位: V A = V ⋅ R 1 R 1 + R 3 V_A = V \cdot \frac{R_1}{R_1 + R_3} VA=VR1+R3R1
    • B 点电位: V B = V ⋅ R 2 R 2 + R 4 V_B = V \cdot \frac{R_2}{R_2 + R_4} VB=VR2+R4R2
  • 检测器两端的电压为:
    V AB = V A − V B V_{\text{AB}} = V_A - V_B VAB=VAVB

  • V AB = 0 V_{\text{AB}} = 0 VAB=0 时:
    R 1 R 1 + R 3 = R 2 R 2 + R 4 \frac{R_1}{R_1 + R_3} = \frac{R_2}{R_2 + R_4} R1+R3R1=R2+R4R2

    ⇒ R 1 R 3 = R 2 R 4 \Rightarrow \frac{R_1}{R_3} = \frac{R_2}{R_4} R3R1=R4R2

Wien’s bridge

  • Wien’s Bridge 是一种用于测量频率的电子电路,同时也用于产生正弦波信号(振荡器的应用)。它以 Max Wien 的名字命名,由他在 1891 年发明。该电桥具可用于测量电容容值、测量未知频率、作为正弦波振荡器生成稳定的波形。

基本结构

Layer 1 R1 A C2 R2 R4 R3 C1

电容测量公式推导

Z 1 = R 1 1 + j ω C 1 R 1 Z 2 = R 2 − 1 j ω C 2 Z 3 = R 3 Z 4 = R 4 Z_1=\frac{R_1}{1+j\omega C_1R_1}\\ Z_2=R_2-\frac{1}{j\omega C_2}\\ Z_3=R_3\\ Z_4=R_4 Z1=1+C1R1R1Z2=R2C21Z3=R3Z4=R4

  • 平衡时:
    Z 1 Z 3 = Z 2 Z 4 \frac{Z_1}{Z_3}=\frac{Z_2}{Z_4} Z3Z1=Z4Z2
    ( R 1 1 + j ω C 1 R 1 ) × R 4 = ( R 2 − 1 j ω C 2 ) × R 3 (\frac{R_1}{1+j\omega C_1R_1})\times R_4 =(R_2-\frac{1}{j\omega C_2})\times R_3 (1+C1R1R1)×R4=(R2C21)×R3
    R 4 R 3 = 1 + j ω C 2 R 2 j ω C 2 1 + j ω C 1 R 1 R 1 \frac{R_4}{R_3}=\frac{1+j\omega C_2R_2}{j\omega C_2}\frac{1+j\omega C_1R_1}{R_1} R3R4=C21+C2R2R11+C1R1
    R 4 R 3 = 1 j ω C 2 R 1 + C 1 C 2 + R 2 R 1 + j ω C 2 R 2 \frac{R_4}{R_3}=\frac{1}{j\omega C_2R_1}+\frac{C_1}{C_2}+\frac{R_2}{R_1}+j\omega C_2R_2 R3R4=C2R11+C2C1+R1R2+C2R2
  • 比较实部可得:

R 4 R 3 = C 1 C 2 + R 1 R 2 \frac{R_4}{R_3}=\frac{C_1}{C_2}+\frac{R_1}{R_2} R3R4=C2C1+R2R1

Maxwell Wien Bridge

  • Maxwell-Wien Bridge 是一种经典的电桥电路,用于测量电感的值,特别是当电感的品质因数(Q值)较低时。

基本结构

Layer 1 R2 R1 C1 L4 A R4 R3

Z 1 = R 1 1 + j ω R 1 C 1 Z 2 = R 2 Z 3 = R 3 Z 4 = R 4 + j ω L 4 Z_{1}=\frac{R_{1}}{1+j \omega R_{1}C_{1}}\\ Z_{2}=R_{2}\\ Z_{3}=R_{3}\\ Z_{4}=R_{4}+j \omega L_{4} Z1=1+R1C1R1Z2=R2Z3=R3Z4=R4+L4

  • 平衡时:

Z 4 = Z 2 Z 3 Z 1 R 4 + j ω L 4 = R 2 R 3 ( R 1 1 + j ω R 1 C 1 ) ⇒ R 4 + j ω L 4 = R 2 R 3 R 1 + j ω C 1 R 2 R 3 Z_{4}=\frac{Z_{2}Z_{3}}{Z_{1}}\\ R_{4}+j\omega L_{4}=\frac{R_{2}R_{3}}{\left ( {\frac{R_{1}}{1+j \omega R_{1}C_{1}}} \right )}\\ \Rightarrow R_{4}+j\omega L_{4}=\frac{R_{2}R_{3}}{R_{1}}+j \omega C_{1}R_{2}R_{3} Z4=Z1Z2Z3R4+L4=(1+R1C1R1)R2R3R4+L4=R1R2R3+C1R2R3

  • 比较虚部可得:
    L 4 = C 1 R 2 R 3 L_{4}=C_{1}R_{2}R_{3} L4=C1R2R3

CG

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值